(1)如圖①,平行四邊形ABCD的對角線AC,BD交于點(diǎn)O,直線EF過點(diǎn)O,分別交AD,BC于點(diǎn)E,F(xiàn).求證:AE=CF.

(2)如圖②,將?ABCD(紙片)沿過對角線交點(diǎn)O的直線EF折疊,點(diǎn)A落在點(diǎn)A1處,點(diǎn)B落在點(diǎn)B1處,設(shè)FB1交CD于點(diǎn)G,A1B1分別交CD,DE于點(diǎn)H,I.求證:EI=FG.

 

【答案】

(1)通過證明△AOE和△COF全等得出AE=CF(2)通過證明△A1IE與△CGF全等得出EI=FG..

【解析】

試題分析:證明:(1)∵四邊形ABCD是平行四邊形,

∴AD∥BC,OA=OC,

∴∠1=∠2,

在△AOE和△COF中,

,∴△AOE≌△COF(ASA),∴AE=CF;

(2)∵四邊形ABCD是平行四邊形,∴∠A=∠C,∠B=∠D,由(1)得AE=CF,

由折疊的性質(zhì)可得:AE=A1E,∠A1=∠A,∠B1=∠B,

∴A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D,又∵∠1=∠2,∴∠3=∠4,∵∠5=∠3,∠4=∠6,∴∠5=∠6,在△A1IE與△CGF中,

,∴△A1IE≌△CGF(AAS),∴EI=FG.

考點(diǎn):全等三角形的性質(zhì)

點(diǎn)評:此種試題為?碱},證明邊相等通常首選證明相關(guān)三角形全等,由其性質(zhì)得出對應(yīng)邊相等,學(xué)生要牢牢掌握全等三角形的五個(gè)判定。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

6、如圖,一個(gè)平行四邊形被分成面積為S1、S2、S3、S4四個(gè)小平行四邊形,當(dāng)CD沿AB自左向右在平行四邊形內(nèi)平行滑動時(shí),S1S4與S2S3的大小關(guān)系為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,平行四邊形紙片ABCD的面積為120,AD=20,AB=18.今沿兩對角線將四邊形ABCD剪成甲、乙、丙、丁四個(gè)三角形紙片.若將甲、丙合并(AD、CB重合)形成對稱圖形戊,如圖2所示,則圖形戊的兩條對角線長度之和是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

30、如圖,在平行四邊形ABCD中,O是對角線AC的中點(diǎn),過O點(diǎn)作直線EF分別交BC、AD于E、F.
(1)求證:BE=DF;
(2)若AC,EF將平行四邊形ABCD分成的四部分的面積相等,指出E點(diǎn)的位置,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,若將四根木條釘成的矩形木框變形為平行四邊形ABCD的形狀,并使其面積為矩形面積的一半,則這個(gè)平行四邊形的一個(gè)最小內(nèi)角的正弦值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果四邊形中一對頂點(diǎn)到另一對頂點(diǎn)所連對角線的距離相等,則把這對頂點(diǎn)叫做這個(gè)四邊形的一對等高點(diǎn).
例如:如圖1,平行四邊形ABCD中,可證點(diǎn)A、C到BD的距離相等,所以點(diǎn)A、C是平行四邊形ABCD的一對等高點(diǎn),同理可知點(diǎn)B、D也是平行四邊形ABCD的一對等高點(diǎn).
(1)已知平行四邊形ABCD,請你在兩個(gè)備用圖中分別畫出一個(gè)只有一對等高點(diǎn)的四邊ABCE,其中E點(diǎn)分別在四邊形ABCD的形內(nèi)、形外(要求:畫出必要的輔助線);
(2)如圖2,P是四邊形ABCD對角線BD上任意一點(diǎn)(不與B、D點(diǎn)重合),S1、S2、S3、S4分別表示△ABP、△CBP、△ADP、△CDP的面積.若四邊形ABCD只有一對等高點(diǎn)A、C,S1、S2、S3、S4四者之間的等量關(guān)系如何?

查看答案和解析>>

同步練習(xí)冊答案