方程的解是x1=0,x2=-1.__________.

 

【答案】

x1="0" ,x2=-1

【解析】

試題分析:利用分解因式法,∵x2+x=0∴x(x+1)=0,x1=0,x2=-1.

考點:一元二次方程的解法。

點評:熟練掌握一元二次方程基本解法,本題難度不大,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

若2x2-7=0,則此方程的解是x1=
 
,x2=-
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、閱讀第(1)題的解題過程,再解答第(2)題:
(1)例:解方程x2-|x|-2=0.
解:當x≥0時,原方程可化為x2-x-2=0.
解得:x1=2,x2=-1(不合題意.舍去)
當x<0時,原方程可化為x2+x-2=0.
解得:x1=-2,x2=1(不合題意.舍去)
∴原方程的解是x1=2,x1=-2.
(2)請參照上例例題的解法,解方程x2-x|x-1|-1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀例題:解方程x2-|x|-2=0.
解:原方程化為|x|2-|x|-2=0.令y=|x|,∴y2-y-2=0
解得y1=2,y2=-1當|x|=2,x=±2;當|x|=-1時(不合題意,舍去)
∴原方程的解是x1=2,x2=-2,仿照上例解方程(x-1)2-5|x-1|-6=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀下面的例題,解方程(x-1)2-5|x-1|-6=0,解方程x2-|x|-2=0;
解:原方程化為|x|2-|x|-2=0.令y=|x|,原方程化成y2-y-2=0
解得:y1=2y2=-1
當|x|=2,x=±2;當|x|=-1時(不合題意,舍去)
∴原方程的解是x1=2,x2=-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下面的材料,然后解答問題:通過觀察,發(fā)現(xiàn)方程x+
1
x
=2+
1
2
的解為x1=2,x2=
1
2
;x+
1
x
=3+
1
3
的解為x1=3,x2=
1
3
;x+
1
x
=4+
1
4
的解為x1=4,x2=
1
4
;…
(1)觀察上述方程的解,猜想關(guān)于x的方程x+
1
x
=5+
1
5
的解是
x1=5,x2=
1
5
x1=5,x2=
1
5
;
(2)根據(jù)上面的規(guī)律,猜想關(guān)于x的方程x+
1
x
=c+
1
c
的解是
x1=c,x2=
1
c
x1=c,x2=
1
c
;
(3)把關(guān)于x的方程
x2-x+1
x-1
=a+
1
a-1
變形為方程x+
1
x
=c+
1
c
的形式是
沒有這個
沒有這個
x-1+
1
x-1
+1=a-1+
1
a-1
x-1+
1
x-1
+1=a-1+
1
a-1
,方程的解是
x1=a-1,x2=
1
a-1
x1=a-1,x2=
1
a-1

查看答案和解析>>

同步練習(xí)冊答案