已知:如圖,在銳角∠MAN的邊AN上取一點B,以AB為直徑的半圓O交AM于C,交∠精英家教網(wǎng)MAN的角平分線于E,過點E作ED⊥AM,垂足為D,反向延長ED交AN于F.
(1)猜想ED與⊙O的位置關系,并說明理由;
(2)若cos∠MAN=
1
2
,AE=
3
,求陰影部分的面積.
分析:(1)連接OE,根據(jù)角平分線的性質及等邊對等角可求得∠1=∠3,再根據(jù)平行線的性質即可得到OE⊥DE,因為OE是半徑,從而得到ED與⊙O相切.
(2)由已知可得到∠MAN=60°,從而推出∠2=∠AFD=30°,根據(jù)等角對等邊得到EF=AE,再根據(jù)S=S△OEF-S扇形OEB即可求解.
解答:精英家教網(wǎng)解:(1)DE與⊙O相切.(1分)
理由如下:
連接OE,
∵AE平分∠MAN,
∴∠1=∠2.
∵OA=OE,
∴∠2=∠3.
∴∠1=∠3.
∴OE∥AD.
∴∠OEF=∠ADF=90°.(2分)
∴OE⊥DE,垂足為E.
∵點E在半圓O上,
∴ED與⊙O相切.(3分)

(2)∵cos∠MAN=
1
2

∴∠MAN=60°.
∴∠2=
1
2
MAN=
1
2
×60°=30°.
∴∠AFD=90°-∠MAN=90°-60°=30°.
∴∠2=∠AFD.
∴EF=AE=
3
.(4分)
在Rt△OEF中,tan∠OFE=
OE
EF
,
∴tan30°=
OE
3

∴OE=1.(5分)
∵∠4=∠MAN=60°,
∴S=S△OEF-S扇形OEB=
1
2
×1×
3
-
60•π•12
360
=
3
2
-
1
6
π
.(6分)
點評:此題主要考查學生對切線的判定方法及扇形面積計算的綜合運用能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,在銳角∠MAN的邊AN上取一點B,以AB為直徑的半圓O交AM于C,交∠MAN的角平分線于E,過點E作ED⊥AM,垂足為D,反向延長ED交AN于F.若cos∠MAN=
1
2
,AE=
3
,則陰影部分的面積=
3
2
-
1
6
π
3
2
-
1
6
π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在銳角∠MAN的邊AN上取一點B,以AB為直徑的半圓O交AM于C,交∠MAN的角平分線于E,過點E作ED⊥AM,垂足為D,反向延長ED交AN于F.

【小題1】猜想ED與⊙O的位置關系,并說明理由;
【小題2】若cos∠MAN=,AE=,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年達州市高中階段教育學校招生統(tǒng)一考試數(shù)學卷 題型:解答題

已知:如圖,在銳角∠MAN的邊AN上取一點B,以AB為直徑的半圓O交AM于C,交∠MAN的角平分線于E,過點E作ED⊥AM,垂足為D,反向延長ED交AN于F.

【小題1】猜想ED與⊙O的位置關系,并說明理由;
【小題2】若cos∠MAN=,AE=,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年達州市階段教育學校招生統(tǒng)一考試數(shù)學卷 題型:解答題

已知:如圖,在銳角∠MAN的邊AN上取一點B,以AB為直徑的半圓O交AM于C,交∠MAN的角平分線于E,過點E作ED⊥AM,垂足為D,反向延長ED交AN于F.

 

 

1.猜想ED與⊙O的位置關系,并說明理由;

2.若cos∠MAN=,AE=,求陰影部分的面積.

 

查看答案和解析>>

同步練習冊答案