【題目】如圖1,過等邊三角形ABC邊AB上一點D作DE∥BC交邊AC于點E,分別取BC,DE的中點M,N,連接MN.
(1)發(fā)現(xiàn):在圖1中, =;
(2)應(yīng)用:如圖2,將△ADE繞點A旋轉(zhuǎn),請求出 的值;
(3)拓展:如圖3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分別是底邊BC,DE的中點,若BD⊥CE,請直接寫出 的值.
【答案】
(1)
(2)
解:如圖2中,連接AM、AN.
∵△ABC,△ADE都是等邊三角形,BM=MC,DN=NE,
∴AM⊥BC,AN⊥DE,
∴ =sin60°, =sin60°,
∴ = ,
∵∠MAB=∠DAN=30°,
∴∠BAD=∠MAN,
∴△BAD∽△MAN,
∴ = =sin60°=
(3)
解:如圖3中,連接AM、AN,延長AD交CE于H,交AC于O.
∵AB=AC,AD=AE,BM=CM,DN=NE,
∴AM⊥BC,AN⊥DE,
∵∠BAC=∠DAE,
∴∠ABC=∠ADE,
∴sin∠ABM=sin∠ADN,
∴ = ,
∵∠BAM= BAC,∠DAN= ∠DAE,
∴∠BAM=∠DAN,
∴∠BAD=∠MAN.
∴△BAD∽△MAN,
∴ = =sin∠ABC,
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△BAD≌△CAE,
∴∠ABD=∠ACE,
∵BD⊥CE,
∴∠BHC=90°,
∴∠ACE+∠COH=90°,∵∠AOB=∠COH,
∴∠ABD+∠AOB=90°,
∴∠BAO=90°,
∵AB=AC,
∴∠ABC=45°,
∴ =sin45°=
【解析】解:(1)如圖1中,作DH⊥BC于H,連接AM.
∵AB=AC,BM=CM,
∴AM⊥BC,
∵△ADE時等邊三角形,
∴∠ADE=60°=∠B,
∴DE∥BC,
∵AM⊥BC,
∴AM⊥DE,
∴AM平分線段DE,
∵DN=NE,
∴A、N、M共線,
∴∠NMH=∠MND=∠DHM=90°,
∴四邊形MNDH時矩形,
∴MN=DH,
∴ = =sin60°= ,
所以答案是 .
【考點精析】解答此題的關(guān)鍵在于理解相似三角形的性質(zhì)的相關(guān)知識,掌握對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,∠1=∠2,DB=DC.
(1)求證:△ABD≌△EDC;
(2)若∠A=135°,∠BDC=30°,求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標為(7,3),點E在邊AB上,且AE=1,已知點P為y軸上一動點,連接EP,過點O作直線EP的垂線段,垂足為點H,在點P從點F(0, )運動到原點O的過程中,點H的運動路徑長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點C(0,4),與x軸交于點A、B,點A坐標為(4,0).
(1)求該拋物線的解析式;
(2)拋物線的頂點為N,在x軸上找一點K,使CK+KN最小,并求出點K的坐標;
(3)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當△CQE的面積最大時,求點Q的坐標;
(4)若平行于x軸的動直線l與該拋物線交于點P,與直線AC交于點F,點D的坐標為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的三條角平分線相交于點O,過點O作EF∥BC,分別交AB于E,交AC于F,則圖中的等腰△有( )個
(A)4(B)5
(C)6(D)7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年12月底我國首艘航空母艦遼寧艦與數(shù)艘去驅(qū)航艦組成編隊,攜多架殲﹣15艦載戰(zhàn)斗機和多型艦載直升機開展跨海區(qū)訓練和試驗任務(wù),在某次演習中,預警直升機A發(fā)現(xiàn)在其北偏東60°,距離160千米處有一可疑目標B,預警直升機立即向位于南偏西30°距離40千米處的航母C報告,航母艦載戰(zhàn)斗機立即升空沿北偏東53°方向向可疑目標飛去,請求出艦載戰(zhàn)斗機到達目標的航程BC.
(結(jié)果保留整數(shù),參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈1.3, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,點D是AB的中點,DE⊥BC,垂足為點E,連接CD.
(1)如圖1,求DE與BC的數(shù)量關(guān)系;
(2)如圖2,若P是線段CB上一動點(點P不與點B、C重合),連接DP,將線段DP繞點D逆時針旋轉(zhuǎn)60°,得到線段DF,∠PDF=60°連接BF,請猜想DE、BF、BP三者之間的數(shù)量關(guān)系,并證明你的結(jié)論;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com