【題目】如圖,已知△ABC中,∠B=90°,BC=3,AB=4,D是邊AB上一點(diǎn),DE∥BC交AC于點(diǎn)E,將△ADE沿DE翻折得到△A′DE,若△A′EC是直角三角形,則AD長(zhǎng)為_______.
【答案】.
【解析】試題分析:先根據(jù)勾股定理得到AC=5,再根據(jù)平行線分線段成比例得到AD:AE=AB:AC=4:5,設(shè)AD=x,則AE=A′E=x,EC=5-x,A′B=2x-4,在Rt△A′BC中,根據(jù)勾股定理得到A′C,再根據(jù)△A′EC是直角三角形,根據(jù)勾股定理得到關(guān)于x的方程,解方程即可求解.
試題解析:在△ABC中,∠B=90°,BC=3,AB=4,
∴AC=5,
∵DE∥BC,
∴AD:AB=AE:AC,即AD:AE=AB:AC=4:5,
設(shè)AD=x,則AE=A′E=x,EC=5-x,A′B=2x-4,
在Rt△A′BC中,A′C=,
∵△A′EC是直角三角形,
∴()2+(5-x)2=(x)2,
解得x1=4(不合題意舍去),x2=.
故AD長(zhǎng)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算結(jié)果正確的是( )
A.3a﹣a=2
B.(a﹣b)2=a2﹣b2
C.6ab2÷(﹣2ab)=﹣3b
D.a(a+b)=a2+b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象與x軸的正半軸相交于點(diǎn)A(2,0)和點(diǎn)B、與y軸相交于點(diǎn)C,它的頂點(diǎn)為M、對(duì)稱軸與x軸相交于點(diǎn)N.
(1)用b的代數(shù)式表示頂點(diǎn)M的坐標(biāo);
(2)當(dāng)tan∠MAN=2時(shí),求此二次函數(shù)的解析式及∠ACB的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若x<y成立,則下列不等式一定成立的是( )
A. 4x<3y B. ﹣2x<﹣2y C. x2<y2 D. x-2018<y-2018
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABE是⊙O的內(nèi)接三角形,AB為直徑,過點(diǎn)B的切線與AE的延長(zhǎng)線交于點(diǎn)C,D是BC的中點(diǎn),連接DE,連接CO,線段CO的延長(zhǎng)線交⊙O于F,F(xiàn)G⊥AB于G.
(1)求證:DE是⊙O的切線;
(2)若AE=4,BE=2,求AG的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com