【題目】在矩形ABCD中,AB=3,AD=4,動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度,沿AB向點(diǎn)B移動(dòng);同時(shí)點(diǎn)P從點(diǎn)B出發(fā),仍以每秒1個(gè)單位的速度,沿BC向點(diǎn)C移動(dòng),連接QP,QD,PD.若兩個(gè)點(diǎn)同時(shí)運(yùn)動(dòng)的時(shí)間為x秒(0<x≤3),解答下列問(wèn)題:

(1)設(shè)△QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時(shí),S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?試說(shuō)明理由.

【答案】
(1)

解:∵四邊形ABCD為矩形,

∴BC=AD=4,CD=AB=3,

當(dāng)運(yùn)動(dòng)x秒時(shí),則AQ=x,BP=x,

∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,

∴SADQ= ADAQ= ×4x=2x,SBPQ= BQBP= (3﹣x)x= x﹣ x2,SPCD= PCCD= (4﹣x)3=6﹣ x,

又S矩形ABCD=ABBC=3×4=12,

∴S=S矩形ABCD﹣SADQ﹣SBPQ﹣SPCD=12﹣2x﹣( x﹣ x2)﹣(6﹣ x)= x2﹣2x+6= (x﹣2)2+4,

即S= (x﹣2)2+4,

∴S為開(kāi)口向上的二次函數(shù),且對(duì)稱軸為x=2,

∴當(dāng)0<x<2時(shí),S隨x的增大而減小,當(dāng)2<x≤3時(shí),S隨x的增大而增大,

又當(dāng)x=0時(shí),S=5,當(dāng)S=3時(shí),S= ,但x的范圍內(nèi)取不到x=0,

∴S不存在最大值,當(dāng)x=2時(shí),S有最小值,最小值為4


(2)

解:存在,理由如下:

由(1)可知BQ=3﹣x,BP=x,CP=4﹣x,

當(dāng)QP⊥DP時(shí),則∠BPQ+∠DPC=∠DPC+∠PDC,

∴∠BPQ=∠PDC,且∠B=∠C,

∴△BPQ∽△PCD,

,即 ,解得x= (舍去)或x= ,

∴當(dāng)x= 時(shí)QP⊥DP


【解析】(1)可用x表示出AQ、BQ、BP、CP,從而可表示出SADQ、SBPQ、SPCD的面積,則可表示出S,再利用二次函數(shù)的增減性可求得是否有最大值,并能求得其最小值;(2)用x表示出BQ、BP、PC,當(dāng)QP⊥DP時(shí),可證明△BPQ∽△CDP,利用相似三角形的性質(zhì)可得到關(guān)于x的方程,可求得x的值.本題為四邊形的綜合應(yīng)用,涉及知識(shí)點(diǎn)有矩形的性質(zhì)、二次函數(shù)的最值、相似三角形的判定和性質(zhì)及方程思想等.在(1)中求得S關(guān)于x的關(guān)系式后,求S的最值時(shí)需要注意x的范圍,在(2)中證明三角形相似是解題的關(guān)鍵.本題考查知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度適中.
【考點(diǎn)精析】利用二次函數(shù)的最值和矩形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a;矩形的四個(gè)角都是直角,矩形的對(duì)角線相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),CE∥DB,BE∥DC,AD=3,DF=1,四邊形DBEC面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的頂點(diǎn)C和E分別在y軸的正半軸和x軸的正半軸上,OC=8,OE=17,拋物線y= x2﹣3x+m與y軸相交于點(diǎn)A,拋物線的對(duì)稱軸與x軸相交于點(diǎn)B,與CD交于點(diǎn)K.
(1)將矩形OCDE沿AB折疊,點(diǎn)O恰好落在邊CD上的點(diǎn)F處.
①點(diǎn)B的坐標(biāo)為(),BK的長(zhǎng)是 , CK的長(zhǎng)是
②求點(diǎn)F的坐標(biāo);
③請(qǐng)直接寫(xiě)出拋物線的函數(shù)表達(dá)式;
(2)將矩形OCDE沿著經(jīng)過(guò)點(diǎn)E的直線折疊,點(diǎn)O恰好落在邊CD上的點(diǎn)G處,連接OG,折痕與OG相交于點(diǎn)H,點(diǎn)M是線段EH上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)H重合),連接MG,MO,過(guò)點(diǎn)G作GP⊥OM于點(diǎn)P,交EH于點(diǎn)N,連接ON,點(diǎn)M從點(diǎn)E開(kāi)始沿線段EH向點(diǎn)H運(yùn)動(dòng),至與點(diǎn)N重合時(shí)停止,△MOG和△NOG的面積分別表示為S1和S2 , 在點(diǎn)M的運(yùn)動(dòng)過(guò)程中,S1S2(即S1與S2的積)的值是否發(fā)生變化?若變化,請(qǐng)直接寫(xiě)出變化范圍;若不變,請(qǐng)直接寫(xiě)出這個(gè)值.
溫馨提示:考生可以根據(jù)題意,在備用圖中補(bǔ)充圖形,以便作答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種型號(hào)油電混合動(dòng)力汽車,從A地到B地燃油行駛純?nèi)加唾M(fèi)用76元,從A地到B地用電行駛純電費(fèi)用26元,已知每行駛1千米,純?nèi)加唾M(fèi)用比純用電費(fèi)用多0.5元.
(1)求每行駛1千米純用電的費(fèi)用;
(2)若要使從A地到B地油電混合行駛所需的油、電費(fèi)用合計(jì)不超過(guò)39元,則至少用電行駛多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某科技館對(duì)學(xué)生參觀實(shí)行優(yōu)惠,個(gè)人票為每張6元,另有團(tuán)體票可售,票價(jià)45元,每票最多限10人入館參觀.

(1)如果參觀的學(xué)生人數(shù)36人,至少應(yīng)付多少元?

(2)如果參觀的學(xué)生人數(shù)為48人,至少應(yīng)付多少元?

(3)如果參觀的學(xué)生人數(shù)為一個(gè)兩位數(shù)(a表示十位上的數(shù)字,b表示個(gè)位上的數(shù)字),用含a、b的代數(shù)式表示至少應(yīng)付給科技館的總金額.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售國(guó)外、國(guó)內(nèi)兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如表所示

國(guó)外品牌

國(guó)內(nèi)品牌

進(jìn)價(jià)(萬(wàn)元/部)

0.44

0.2

售價(jià)(萬(wàn)元/部)

0.5

0.25

該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種手機(jī)若干部,共需14.8萬(wàn)元,預(yù)計(jì)全部銷售后可獲毛利潤(rùn)共2.7萬(wàn)元.[毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷售量]

(1)該商場(chǎng)計(jì)劃購(gòu)進(jìn)國(guó)外品牌、國(guó)內(nèi)品牌兩種手機(jī)各多少部?

(2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少國(guó)外品牌手機(jī)的購(gòu)進(jìn)數(shù)量,增加國(guó)內(nèi)品牌手機(jī)的購(gòu)進(jìn)數(shù)量.已知國(guó)內(nèi)品牌手機(jī)增加的數(shù)量是國(guó)外品牌手機(jī)減少的數(shù)量的3倍,而且用于購(gòu)進(jìn)這兩種手機(jī)的總資金不超過(guò)15.6萬(wàn)元,該商場(chǎng)應(yīng)該怎樣進(jìn)貨,使全部銷售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】臺(tái)球是一項(xiàng)高雅的體育運(yùn)動(dòng),其中包含了許多物理、幾何學(xué)知識(shí),圖-是一個(gè)臺(tái)球桌,目標(biāo)球F與本球之間有一個(gè)G球阻擋.

(1)擊球者想通過(guò)擊打E球,讓E球先撞球臺(tái)的AB邊,經(jīng)過(guò)一次反彈后再撞擊F球,他應(yīng)將E球打到AB邊上的哪一點(diǎn)?請(qǐng)?jiān)趫D10-①中用尺規(guī)作出這一點(diǎn)H,并作出E球的運(yùn)行路線;(不寫(xiě)畫(huà)法,保留作圖痕跡)

(2)如圖-,現(xiàn)以D為原點(diǎn),建立直角坐標(biāo)系,記A(0,4),C(8,0),E(4,3),F(xiàn)(7,1),求E球按剛才方式運(yùn)行到球的路線長(zhǎng)度(忽略球的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三角形紙片ABC的面積為48,BC的長(zhǎng)為8.按下列步驟將三角形紙片ABC進(jìn)行裁剪和拼圖:

第一步:如圖1,沿三角形ABC的中位線DE將紙片剪成兩部分.在線段DE上任意取一點(diǎn)F,在線段BC上任意取一點(diǎn)H,沿FH將四邊形紙片DBCE剪成兩部分;

第二步:如圖2,將FH左側(cè)紙片繞點(diǎn)D旋轉(zhuǎn)180°,使線段DB與DA重合;將FH右側(cè)紙片繞點(diǎn)E旋轉(zhuǎn)180°,使線段EC與EA重合,再與三角形紙片ADE拼成一個(gè)與三角形紙片ABC面積相等的四邊形紙片.

圖1 圖2

(1)當(dāng)點(diǎn)F,H在如圖2所示的位置時(shí),請(qǐng)按照第二步的要求,在圖2中補(bǔ)全拼接成的四邊形;

(2)在按以上步驟拼成的所有四邊形紙片中,其周長(zhǎng)的最小值為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的圖案是由六個(gè)全等的直角三角形組成,點(diǎn)O是該圖案的中心,則該圖案可看成由一個(gè)直角三角形繞O點(diǎn)順時(shí)針依次旋轉(zhuǎn)________得到,或可看成由兩個(gè)相鄰的直角三角形繞O點(diǎn)順時(shí)針依次旋轉(zhuǎn)________得到,或可看成由三個(gè)相鄰的直角三角形繞O點(diǎn)旋轉(zhuǎn)________得到.

查看答案和解析>>

同步練習(xí)冊(cè)答案