【題目】某人去年水果批發(fā)市場采購蘋果,他看中了、兩家蘋果.這兩家蘋果品質(zhì)一樣,零售價都為6/千克,批發(fā)價各不相同.

1家規(guī)定:批發(fā)數(shù)量不超過1000千克,按零售價的92%優(yōu)惠;批發(fā)數(shù)量超過1000千克且不超過2000千克,所有蘋果按零售價的90%優(yōu)惠;超過2000千克,所有蘋果按零售價的88%優(yōu)惠.

家的規(guī)定如下表:

數(shù)量范圍(千克)

0—500

500以上—1500

1500以上—2500

2500以上

價格(元)

零售價的95%

零售價的85%

零售價的75%

零售價的70%

表格說明:批發(fā)價格分段計算,如某人批發(fā)蘋果2100千克,則總費用=6×95%×500+6×85%×1000+6×75%×2100-1500).

1)如果他批發(fā)600千克蘋果,那么他在、兩家批發(fā)分別需要多少元?

2)如果他批發(fā)千克蘋果(1500<<2000),請你分別用含的代數(shù)式表示在、兩家批發(fā)所需的費用.

3)現(xiàn)在他要批發(fā)1800千克蘋果,選擇在哪家批發(fā)更優(yōu)惠呢?請說明理由.

【答案】1)他在A家批發(fā)需要3312元;在B家批發(fā)需要3360元;(2)在A家批發(fā)需要元;在B家批發(fā)需要元;(3)選擇在B家批發(fā)更優(yōu)惠,理由見解析.

【解析】

1)根據(jù)兩家批發(fā)價的規(guī)定分別列出式子計算即可;

2)根據(jù)x的取值范圍,按兩家批發(fā)價列代數(shù)式即可;

3)根據(jù)題(2)的結(jié)論,令代入兩個代數(shù)式求解,然后比較大小即可.

1A家批發(fā)所需費用:(元)

B家批發(fā)所需費用:(元)

答:他在A家批發(fā)需要3312元;在B家批發(fā)需要3360元;

2A家批發(fā)所需費用:(元)

B家批發(fā)所需費用:(元)

答:在A家批發(fā)需要元;在B家批發(fā)需要元;

3)選擇在B家批發(fā)更優(yōu)惠,理由如下:

結(jié)合(2)的結(jié)論,令

代入A家得:(元)

代入B家得:(元)

故選擇在B家批發(fā)更優(yōu)惠.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,P、Q分別是BC、AC上的點,作PR⊥AB,PS⊥AC,垂足分別是RS,若AQ=PQ,PR=PS,下面四個結(jié)論:①AS=AR;②QP∥AR;③△BRP≌△QSP④AP垂直平分RS.其中正確結(jié)論的序號是 (請將所有正確結(jié)論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,相交于點分別為上的兩點,,分別交兩點,連,下列結(jié)論:①;②;③;④ ,其中正確的是(

A. ①②B. ①④C. ①②④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,ABAC,BCA=65°,作CDAB,并與O相交于點D,連接BD,則∠DBC的大小為

A. 15° B. 35° C. 25° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校園的學(xué)子餐廳把密碼做成了數(shù)學(xué)題,小亮在餐廳就餐時,思索了一會,輸入密碼,順利地連接到了學(xué)子餐廳的網(wǎng)絡(luò).

(1)如果2,那么他輸入的密碼是___________

(2)若他輸入的密碼是4235,最后兩位被隱藏了,那么被隱藏的兩位數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個分別標有數(shù)字的扇形區(qū)域,其中標有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時,稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個扇形的交線,則不計轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個扇形的內(nèi)部為止)

(1)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;

(2)轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出

(1)如圖①,在ABC中,∠A=120°,AB=AC=5,則ABC的外接圓半徑R的值為

問題探究

(2)如圖②,O的半徑為13,弦AB=24,MAB的中點,P是⊙O上一動點,求PM的最大值.

問題解決

(3)如圖③所示,AB、AC、BC是某新區(qū)的三條規(guī)劃路其中,AB=6km,AC=3km,BAC=60°,BC所對的圓心角為60°.新區(qū)管委會想在BC路邊建物資總站點P,在AB、AC路邊分別建物資分站點E、F.也就是,分別在、線段ABAC上選取點P、E、F.由于總站工作人員每天要將物資在各物資站點間按P→E→F→P的路徑進行運輸,因此,要在各物資站點之間規(guī)劃道路PE、EFFP.為了快捷環(huán)保和節(jié)約成本要使得線段PE、EF、FP之和最短,試求PE+EF+FP的最小值(各物資站點與所在道路之間的距離、路寬均忽略不計).

圖① 圖② 圖③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)涂大青山有較為豐富的毛竹資源,某企業(yè)已收購毛竹110噸,根據(jù)市場信息,將毛竹直接銷售,每噸可獲利100元;如果對毛竹進行粗加工,每天可加工8噸,每噸可獲利1000元;如果進行精加工,每天可加工噸,每噸可獲利5000元,由于受條件限制,在同一天中只能采用一種方式加工,并且必須在一個月(30天)內(nèi)將這批毛竹全部銷售、為此研究了兩種方案:

1)方案一:將收購毛竹全部粗加工后銷售,則可獲利________元;

方案二:30天時間都進行精加工,未來得及加工的毛竹,在市場上直接銷售,則可獲利________元.

2)是否存在第三種方案,將部分毛竹精加工,其余毛竹粗加工,并且恰好在30天內(nèi)完成?若存在,求銷售后所獲利潤;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:p,q是正整數(shù),且),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×qn的完美分解.并規(guī)定:

例如18可以分解成1×18,2×93×6,因為1819263,所以3×618的完美分解,所以F18)=

1F13)= F24)= ;

2)如果一個兩位正整數(shù)t,其個位數(shù)字是a,十位數(shù)字為,交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為36,那么我們稱這個數(shù)為“和諧數(shù)”,求所有“和諧數(shù)”;

3)在(2)所得“和諧數(shù)”中,求Ft)的最大值.

查看答案和解析>>

同步練習(xí)冊答案