如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),四邊形OBHC為矩形,CH的延長線交拋物線于點(diǎn)D(5,2),連結(jié)BC、AD.

(1)求C點(diǎn)的坐標(biāo)及拋物線的解析式;(6分)
(2)將△BCH繞點(diǎn)B按順時(shí)針旋轉(zhuǎn)90°后再沿x軸對(duì)折得到△BEF(點(diǎn)C與點(diǎn)E對(duì)應(yīng)),判斷點(diǎn)E是否落在拋物線上,并說明理由;(4分)
(3)設(shè)過點(diǎn)E的直線交AB邊于點(diǎn)P,交CD邊于點(diǎn)Q.問是否存在點(diǎn)P,使直線PQ分梯形ABCD的面積為1∶3兩部分?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由. (4分)
(1);(2)點(diǎn)E落在拋物線上,理由見解析;(3)(,0)或(,0).

試題分析:(1)由于CD∥x軸,因此C,D兩點(diǎn)的縱坐標(biāo)相同,那么C點(diǎn)的坐標(biāo)就是(0,2),n=2,已知拋物線過D點(diǎn),可將D的坐標(biāo)代入拋物線的解析式中即可求出m的值,也就確定了拋物線的解析式;(2)由于旋轉(zhuǎn)翻折只是圖形的位置有變化,而大小不變,因此:△BCH≌△BEF,OC=BF,CH=EF.OC的長可以通過C點(diǎn)的坐標(biāo)得出,求CH即OB的長,要先得出B點(diǎn)的坐標(biāo),可通過拋物線的解析式來求得.這樣可得出E點(diǎn)的坐標(biāo),然后代入拋物線的解析式即可判斷出E是否在拋物線上;(3)本題可先表示出直線PQ分梯形ABCD兩部分的各自的面積,首先要得出P,Q的坐標(biāo),可先設(shè)出P點(diǎn)的坐標(biāo)如:(a,0),由于直線PQ過E點(diǎn),因此可根據(jù)P,E的坐標(biāo)用待定系數(shù)法表示出直線PQ的解析式,進(jìn)而可求出Q點(diǎn)的坐標(biāo),這樣就能表示出BP,AP,CQ,DQ的長,也就能表示出梯形BPQC和梯形APQD的面積,然后分類進(jìn)行討論:①梯形BPQC的面積:梯形APQD的面積=1:3,②梯形APQD的面積:梯形BPQC的面積=1:3,根據(jù)上述兩種不同的比例關(guān)系式,可求出各自的a的取值,也就能求出不同的P點(diǎn)的坐標(biāo),綜上所述可求出符合條件的P點(diǎn)的坐標(biāo).
試題解析:(1)∵四邊形OBHC為矩形,∴CD∥AB.
又D(5,2),∴C(0,2),OC=2.
,解得.
∴拋物線的解析式為:.
(2)點(diǎn)E落在拋物線上,理由如下:
由y=0,得, 解得x1=1,x2="4." ∴A(4,0),B(1,0). ∴OA=4,OB=1.
由矩形性質(zhì)知:CH=OB=1,BH=OC=2,∠BHC=90°,
由旋轉(zhuǎn)、軸對(duì)稱性質(zhì)知:EF=1,BF=2,∠EFB=90°,
∴點(diǎn)E的坐標(biāo)為(3,-1).
把x=3代入,得
∴點(diǎn)E在拋物線上.
(3)存在點(diǎn)P(a,0). 記S梯形BCQP = S1,S梯形ADQP = S2,易求S梯形ABCD = 8.
當(dāng)PQ經(jīng)過點(diǎn)F(3,0)時(shí),易求S1=5,S2 = 3,此時(shí)S1∶S2不符合條件,故a≠3.
設(shè)直線PQ的解析式為y = kx+b(k≠0),則,解得.
∴直線PQ的解析式為.
由y = 2得x = 3a-6,∴Q(3a-6,2) .
∴CQ = 3a-6,BP = a-1, .
下面分兩種情形:①當(dāng)S1∶S2 = 1∶3時(shí),,
∴4a-7=2,解得;
②當(dāng)S1∶S2 =3∶1時(shí),,
∴4a-7=6,解得;
綜上所述:所求點(diǎn)P的坐標(biāo)為. (,0)或(,0)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在邊長為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個(gè)全等的等腰直角三角形,再沿圖中的虛線折起,折成一個(gè)長方體形狀的包裝盒(A、B、C、D四個(gè)頂點(diǎn)正好重合于上底面上一點(diǎn))。已知E、F在AB邊上,是被剪去的一個(gè)等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=BF=x(cm).

(1)若折成的包裝盒恰好是個(gè)正方體,試求這個(gè)包裝盒的體積V;
(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問x應(yīng)取何值?S最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)是(    )
A.(-1,3)B.(-1,-3)C.(1,-3)D.(1,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(6,0)、B(﹣2,0)和點(diǎn)C(0,﹣8).

(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動(dòng)點(diǎn),當(dāng)△KCM的周長最小時(shí),點(diǎn)K的坐標(biāo)為   
(3)連接AC,有兩動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個(gè)單位長度的速度沿折線OAC按O→A→C的路線運(yùn)動(dòng),點(diǎn)Q以每秒8個(gè)單位長度的速度沿折線OCA按O→C→A的路線運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相遇時(shí),它們都停止運(yùn)動(dòng),設(shè)P、Q同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OPQ的面積為S.
①請問P、Q兩點(diǎn)在運(yùn)動(dòng)過程中,是否存在PQ∥OC?若存在,請求出此時(shí)t的值;若不存在,請說明理由;
②請求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
③設(shè)S0是②中函數(shù)S的最大值,直接寫出S0的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)的圖象如圖所示,則下列結(jié)論中:①;②;③;④.正確的是              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,一男生推鉛球,鉛球行進(jìn)高度y(米)與水平距離x(米)之間的關(guān)系是,則鉛球推出距離    米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某玩具批發(fā)商銷售每件進(jìn)價(jià)為40元的玩具,市場調(diào)查發(fā)現(xiàn),若以每件50元的價(jià)格銷售,平均每天銷售90件,單價(jià)每提高1元,平均每天就少銷售3件.
(1)平均每天的銷售量y(件)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系式為         ;
(2)求該批發(fā)商平均每天的銷售利潤W(元)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系式;
(3)物價(jià)部門規(guī)定每件售價(jià)不得高于55元,當(dāng)每件玩具的銷售價(jià)為多少元時(shí),可以獲得最大利潤?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)E、F在拋物線的對(duì)稱軸的同側(cè) (點(diǎn)E在點(diǎn)F的左側(cè)),過點(diǎn)E、F分別作x軸的垂線,分別交x軸于點(diǎn)B、D,交直線y=2ax+b于點(diǎn)A、C,設(shè)S為直線AB、CD與x軸、直線y=2ax+b所圍成圖形的面積,.則S與的數(shù)量關(guān)系式為:S=              

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

小敏在今年的校運(yùn)動(dòng)會(huì)跳遠(yuǎn)比賽中跳出了滿意一跳,函數(shù)(的單位:秒,的單位:米)可以描述他跳躍時(shí)重心高度的變化,則他起跳后到重心最高時(shí)所用的時(shí)間是(  )
A.0.71sB.0.70sC.0.63sD.0.36s

查看答案和解析>>

同步練習(xí)冊答案