【題目】去括號:﹣(ab+c)=( 。

A. a+b+cB. a+bcC. ab+cD. abc

【答案】B

【解析】

根據(jù)去括號的法則:括號前是“+”,去括號后,括號里的各項都不改變符號;括號前是“﹣”,去括號后,括號里的各項都改變符號.

解:﹣(ab+c)=﹣a+bc

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知線段AB的垂直平分線CPAB于點P,且AP=2PC,現(xiàn)欲在線段AB上求作兩點D,E,使其滿足AD=DC=CE=EB,對于以下甲、乙兩種作法:

甲:分別作∠ACPBCP的平分線,分別交ABD、E,則D、E即為所求;乙:分別作AC、BC的垂直平分線,分別交ABD、E,則D、E兩點即為所求.下列說法正確的是(  )

A. 甲、乙都正確 B. 甲、乙都錯誤

C. 甲正確,乙錯誤 D. 甲錯誤,乙正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=ACBAC=54°,以AB為直徑的 O分別交ACBC于點D,E,過點B作⊙O的切線,交AC的延長線于點F

1求證:BE=CE

2求∠CBF的度數(shù);

3AB=6,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠1=65°,∠2=65°,∠3=115°.試說明:DE∥BC,DF∥AB.根據(jù)圖形,完成下面的推理:

因為∠1=65°,∠2=65°,

所以∠1=∠2.

所以______________    (         ).

因為AB與DE相交,

所以∠1=∠4(     ).

所以∠4=65°.

又因為∠3=115°,

所以∠3+∠4=180°.

所以        (          ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將點A(﹣1,﹣2)向右平移3個單位長度得到點B,則點B關于x軸的對稱點B′的坐標為( )
A.(﹣3,﹣2)
B.(2,2)
C.(﹣2,2)
D.(2,﹣2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不動,△ADE繞點A旋轉,連接BE、CD,F(xiàn)為BE的中點,連接AF.

(1)如圖①,當∠BAE=90°時,求證:CD=2AF;
(2)當∠BAE≠90°時,(1)的結論是否成立?請結合圖②說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x2+mx+n分解因式的結果是(x+2)(x﹣1),則m+n的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在﹣3,0,1,﹣2這四個數(shù)中,是負數(shù)的有( )個.
A.1
B.2
C.3
D.0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在正方形ABCD中,點P為AD延長線上一點,連接AC、CP,過點C作CF⊥CP于點C,交AB于點F,過點B作BM⊥CF于點N,交AC于點M.

(1)若, ,求;

(2)若,求證: ;

(3)如圖2,在其他條件不變的情況下,將“正方形ABCD”改為“矩形ABCD”,且 AB≠BC,AC=AP,取CP中點E,連接EB,交AC于點O,猜想:∠AOB與∠ABM之間有何數(shù)量關系?請說明理由.

查看答案和解析>>

同步練習冊答案