【題目】如圖①,四邊形ABCD為平行四邊形,E在CD邊上,將△BCE沿BE翻折,點(diǎn)C剛好落在AB邊上的點(diǎn)C′處
(1)在圖①中,請(qǐng)直接寫(xiě)出四對(duì)相等的線段;
(2)將圖①中的△ABC′剪下并拼接在圖②中△DCF的位置上(其中△ABC′的三個(gè)頂點(diǎn)A、B、C′分別與△DCF的三個(gè)頂點(diǎn)D、C、F重合,并且圖②的點(diǎn)C′、D、F在同一直線上)試證明圖②中的四邊形BCFC′是菱形.
【答案】(1)、AB=CD,AD=BC,BC=BC′,EC=EC′;(2)、證明過(guò)程見(jiàn)解析
【解析】
試題分析:(1)、根據(jù)平行四邊形的性質(zhì)以及折疊圖形的性質(zhì)得出答案;(2)、根據(jù)平行四邊形的性質(zhì)得出BC=AD,BC∥C′D,根據(jù)圖形得出△ABC′≌△DCF,然后根據(jù)線段之間的關(guān)系得出BC= C′F,從而得出四邊形BCFC′為平行四邊形,根據(jù)折疊圖形的性質(zhì)得出BC=BC′,從而得出菱形.
試題解析:(1)AB=CD,AD=BC,BC=BC′,EC=EC′
(2)、在圖①中, ∵四邊形ABCD為平行四邊形,∴BC=AD,BC∥C′D
在圖①與圖②中,由題意知:△ABC′≌△DCF,
∴AC′=DF
∴AC′+C′D= C′D +DF
∴AD= C′F,即得BC= C′F
∵BC∥C′F,∴四邊形BCFC′為平行四邊形
又由折疊的性質(zhì)得:BC=BC′,
∴四邊形BCFC′為菱形。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)長(zhǎng)方形中,長(zhǎng)和寬分別為4cm、3cm,若該長(zhǎng)方形繞著它的一邊旋轉(zhuǎn)一周,則形成的幾何體的體積是多少?(結(jié)果用π表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線與反比例函數(shù)的圖象相交于點(diǎn)A(a,3),且與x軸相交于點(diǎn)B.
(1)求該反比例函數(shù)的表達(dá)式;
(2)若P為y軸上的點(diǎn),且△AOP的面積是△AOB的面積的,請(qǐng)求出點(diǎn)P的坐標(biāo).
(3)寫(xiě)出直線向下平移2個(gè)單位的直線解析式,并求出這條直線與雙曲線的交點(diǎn)坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加快推進(jìn)教育現(xiàn)代化,某中學(xué)計(jì)劃分批購(gòu)買(mǎi)部分A品牌電腦和B品牌課桌.下表是前兩次購(gòu)買(mǎi)的情況:
A品牌電腦的數(shù)量 (單位:臺(tái)) | B品牌課桌的數(shù)量 (單位:張) | 總價(jià) (單位:元) | |
第一次 | 10 | 200 | 70000 |
第二次 | 15 | 100 | 75000 |
(1)每臺(tái)A品牌電腦和每張B品牌課桌的價(jià)格各是多少元?
(2)在“五·一”黃金周期間,經(jīng)銷商對(duì)一次性購(gòu)買(mǎi)量大的客戶打折優(yōu)惠:一次性購(gòu)買(mǎi)A品牌電腦不少于50臺(tái),按9折優(yōu)惠;一次性購(gòu)買(mǎi)B品牌課桌不少于450張,按8折優(yōu)惠.如果學(xué)校再次購(gòu)買(mǎi)A品牌電腦和B品牌課桌若干,恰好花去24萬(wàn)元,并且均享受了優(yōu)惠,那么學(xué)?赡苡心膸追N購(gòu)買(mǎi)方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將數(shù)字“6”旋轉(zhuǎn)180°,得到數(shù)字“9”,將數(shù)字“9”旋轉(zhuǎn)180°,得到數(shù)字“6”,現(xiàn)將數(shù)字“69”旋轉(zhuǎn)180°,得到的數(shù)字是( )
A.96 B.69 C.66 D.99
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是( )
A. x=-1是方程4x+3=0的解
B. m=-1是方程9m+4m=13的解
C. x=1是方程3x-2=3的解
D. x=0是方程0.5(x+3)=1.5的解
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市為創(chuàng)建“國(guó)家級(jí)森林城市”,政府決定對(duì)江邊一處廢棄荒地進(jìn)行綠化,要求栽植甲、乙兩種不同的樹(shù)苗共6000棵,且甲種樹(shù)苗不得多于乙種樹(shù)苗.某承包商以26萬(wàn)元的報(bào)價(jià)中標(biāo)承包了這項(xiàng)工程.根據(jù)調(diào)查及相關(guān)資料表明:移栽一棵樹(shù)苗的平均費(fèi)用為8元,甲、乙兩種樹(shù)苗的購(gòu)買(mǎi)價(jià)及成活率如表:
設(shè)購(gòu)買(mǎi)甲種樹(shù)苗x棵,承包商獲得的利潤(rùn)為y元.請(qǐng)根據(jù)以上信息解答下列問(wèn)題:
(1) 設(shè)y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2) 承包商要獲得不低于中標(biāo)價(jià)16%的利潤(rùn),應(yīng)如何選購(gòu)樹(shù)苗?
(3) 政府與承包商的合同要求,栽植這批樹(shù)苗的成活率必須不低于93%,否則承包商出資補(bǔ)栽;若成貨率達(dá)到94%以上(含94%),則政府另給予工程款總額6%的獎(jiǎng)勵(lì),該承包商應(yīng)如何選購(gòu)樹(shù)苗才能獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(-1,y1)、B(2,y2)、C(-3,y3)在函數(shù)y=-5(x+1)2+3的圖像上,則y1、y2、y3的大小關(guān)系是( )
A.y1< y2< y3
B.y1< y3 < y2
C.y2 < y3 < y1
D.y3< y2 < y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“分組合作學(xué)習(xí)”成為我市推動(dòng)課堂教學(xué)改革,打造自主高效課堂的重要舉措.某中學(xué)從全校學(xué)生中隨機(jī)抽取100人作為樣本,對(duì)“分組合作學(xué)習(xí)”實(shí)施前后學(xué)生的學(xué)習(xí)興趣變化情況進(jìn)行調(diào)查分析,統(tǒng)計(jì)如下:
請(qǐng)結(jié)合圖中信息解答下列問(wèn)題:
(1)求出分組前學(xué)生學(xué)習(xí)興趣為“高”的所占的百分比為_(kāi)________;
(2)補(bǔ)全分組后學(xué)生學(xué)習(xí)興趣的統(tǒng)計(jì)圖;
(3)通過(guò)“分組合作學(xué)習(xí)”前后對(duì)比,請(qǐng)你估計(jì)全校2000名學(xué)生中學(xué)習(xí)興趣獲得提高的學(xué)生有多少人?請(qǐng)根據(jù)你的估計(jì)情況談?wù)剬?duì)“分組合作學(xué)習(xí)”這項(xiàng)舉措的看法.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com