分析 先根據(jù)勾股定理求出BD的長度,再根據(jù)勾股定理的逆定理判斷出△BCD的形狀,再利用三角形的面積公式求解即可.
解答 解:能求出四邊形ABCD的面積為36;理由如下:
連接BD,如圖所示:
∵∠A=90°,AB=3,AD=4,
∴BD=$\sqrt{A{B}^{2}+A{D}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5,
在△BCD中,∵BD2+BC2=25+144=169=CD2,
∴△BCD是直角三角形,∠DBC=90°,
∴S四邊形ABCD=$\frac{1}{2}$AB•AD+$\frac{1}{2}$BD•BC,
=$\frac{1}{2}$×3×4+$\frac{1}{2}$×5×12,
=36.
答:四邊形ABCD的面積是36.
點(diǎn)評 本題考查了勾股定理、勾股定理的逆定理及三角形的面積;能根據(jù)勾股定理的逆定理判斷出△BCD的形狀是解答此題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | k>2 | B. | 1<k<2 | C. | $\frac{1}{2}$<k<1 | D. | 0<k<$\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com