【題目】如圖,△ABC中,AD⊥BC于D,BE⊥AC于E,AD與BE相交于F,若BF=AC,則∠ABC的大小是(
A.40°
B.45°
C.50°
D.60°

【答案】B
【解析】解:∵AD⊥BC于D,BE⊥AC于E, ∴∠BEA=∠ADC=90°.
∵∠FBD+∠BFD=90°,∠AFE+∠FAE=90°,∠BFD=∠AFE,
∴∠FBD=∠FAE,
在△BDF和△ADC中, ,
∴△BDF≌△ADC(AAS),
∴BD=AD,
∴∠ABC=∠BAD=45°,
故選:B.
【考點精析】根據(jù)題目的已知條件,利用等腰直角三角形和全等三角形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;全等三角形的對應(yīng)邊相等; 全等三角形的對應(yīng)角相等.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】通過類比聯(lián)想,引申拓展研究典型題目,可達到解一題知一類的目的,下面是一個案例,請補充完整.

原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連結(jié)EF,試猜想EF、BE、DF之間的數(shù)量關(guān)系.
(1)思路梳理
把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,由∠ADG=∠B=90°,得∠FDG=180°,即點F、D、G共線,易證△AFG≌ , 故EF、BE、DF之間的數(shù)量關(guān)系

(2)類比引申
如圖2,點E、F分別在正方形ABCD的邊CB、DC的延長線上,∠EAF=45°,連結(jié)EF,試猜想EF、BE、DF之間的數(shù)量關(guān)系為 , 并給出證明.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠BAD+∠EAC=45°,若BD=3,EC=6,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=40°,AB的垂直平分線MN交AC于點D,則∠DBC=°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算。
(1)一個數(shù)加上﹣13得﹣5,那么這個數(shù)為
(2)計算:36÷4×(﹣ )=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個整數(shù)816600…0用科學記數(shù)法表示為8.166×1010,則原數(shù)中“0”的個數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),菱形ABCD對角線AC、BD的交點O是四邊形EFGH對角線FH的中點,四個頂點A、B、C、D分別在四邊形EFGH的邊EF、FG、GH、HE上.

(1)求證:四邊形EFGH是平行四邊形;

(2)如圖(2)若四邊形EFGH是矩形,當AC與FH重合時,已知,且菱形ABCD的面積是20,求矩形EFGH的長與寬.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小麗的家和學校在一條筆直的馬路旁,某天小麗沿著這條馬路上學,先從家步行到公交站臺甲,再乘車到公交站臺乙下車,最后步行到學校(在整個過程中小麗步行的速度不變),圖中折線ABCDE表示小麗和學校之間的距離y(米)與她離家時間x(分鐘)之間的函數(shù)關(guān)系.

(1)求小麗步行的速度及學校與公交站臺乙之間的距離;

(2)當8≤x≤15時,求y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x=5是方程ax+3bx﹣10=0的解,則3a+9b的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E、F分別是正方形ABCD的邊CD、AD上的點,且CE=DF,AE、BF相交于點O,下列結(jié)論:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4) 中正確的有( )

A. 4個
B. 3個
C. 2個
D. 1個

查看答案和解析>>

同步練習冊答案