【題目】北京第一條地鐵線路于1971年1月15日正式開(kāi)通運(yùn)營(yíng).截至2017年1月,北京地鐵共“金山銀山,不如綠水青山”.某市不斷推進(jìn)“森林城市”建設(shè),今春種植四類樹(shù)苗,園林部門(mén)從種植的這批樹(shù)苗中隨機(jī)抽取了4000棵,將各類樹(shù)苗的種植棵數(shù)繪制成扇形統(tǒng)計(jì)圖,將各類樹(shù)苗的成活棵數(shù)繪制成條形統(tǒng)計(jì)圖,經(jīng)統(tǒng)計(jì)松樹(shù)和楊樹(shù)的成活率較高,且楊樹(shù)的成活率為97%,根據(jù)圖表中的信息解答下列問(wèn)題:
(1)扇形統(tǒng)計(jì)圖中松樹(shù)所對(duì)的圓心角為 度,并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)該市今年共種樹(shù)16萬(wàn)棵,成活了約多少棵?
(3)園林部門(mén)決定明年從這四類樹(shù)苗中選兩類種植,請(qǐng)用列表法或樹(shù)狀圖求恰好選到成活率較高的兩類樹(shù)苗的概率.(松樹(shù)、楊樹(shù)、榆樹(shù)、柳樹(shù)分別用A,B,C,D表示)
【答案】(1)144,理由詳見(jiàn)解析;(2)成活了約15萬(wàn)棵;(3).
【解析】
(1)求出“松樹(shù)”所占的百分比,即可求出“松樹(shù)”所占的圓心角的度數(shù),求出“楊樹(shù)”成活的棵數(shù)即可補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求出樣本的總成活率,估計(jì)總體成活率,進(jìn)而求出成活的棵數(shù);
(3)用列表法列舉出所有等可能出現(xiàn)的情況,松樹(shù)、楊樹(shù)、榆樹(shù)、柳樹(shù)分別用A,B,C,D表示,從中找出“選到成活率較高的兩類樹(shù)苗,就A、B”的結(jié)果數(shù),進(jìn)而求出概率.
解:(1)松樹(shù)所對(duì)應(yīng)的圓心角度數(shù):360°×(1﹣15%﹣20%﹣25%)=144°,
楊樹(shù)成活的棵數(shù):4000×25%×97%=970(棵),
故答案為:144,補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:
(2)160000×=150000(棵)
答:該市今年共種樹(shù)16萬(wàn)棵,成活了約15萬(wàn)棵;
(3)用列表法表示所有可能出現(xiàn)的結(jié)果如下:(松樹(shù)、楊樹(shù)、榆樹(shù)、柳樹(shù)分別用A,B,C,D表示)
共有12種等可能出現(xiàn)的結(jié)果數(shù),其中選中松樹(shù)和楊樹(shù)的有2種,
∴選到成活率較高的兩類樹(shù)苗的概率為=.
答:選到成活率較高的兩類樹(shù)苗的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】北中環(huán)橋是省城太原的一座跨汾河大橋(如圖1),它由五個(gè)高度不同,跨徑也不同的拋物線型鋼拱通過(guò)吊橋,拉鎖與主梁相連,最高的鋼拱如圖2所示,此鋼拱(近似看成二次函數(shù)的圖象-拋物線)在同一豎直平面內(nèi),與拱腳所在的水平面相交于A,B兩點(diǎn),拱高為78米(即最高點(diǎn)O到AB的距離為78米),跨徑為90米(即AB=90米),以最高點(diǎn)O為坐標(biāo)原點(diǎn),以平行于AB的直線為軸建立平面直角坐標(biāo)系,則此拋物線鋼拱的函數(shù)表達(dá)式為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某年五月,我國(guó)南方某省A、B兩市遭受嚴(yán)重洪澇災(zāi)害,鄰近縣市C、D決定調(diào)運(yùn)物資支援A、B兩市災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市,A市需要的物資比B市需要的物資少100噸.已知從C市運(yùn)往A、B兩市的費(fèi)用分別為每噸20元和25元,從D市運(yùn)往往A、B兩市的費(fèi)用分別為每噸15元和30元,設(shè)從D市運(yùn)往B市的救災(zāi)物資為x噸.
(1)A、B兩市各需救災(zāi)物資多少噸?
(2)設(shè)C、D兩市的總運(yùn)費(fèi)為w元,求w與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)經(jīng)過(guò)搶修,從D市到B市的路況得到了改善,縮短了運(yùn)輸時(shí)間,運(yùn)費(fèi)每噸減少m元(m>0),其余路線運(yùn)費(fèi)不變.若C、D兩市的總運(yùn)費(fèi)的最小值不小于10320元,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是菱形ABCD對(duì)角線的交點(diǎn),過(guò)點(diǎn)C作CE∥OD,過(guò)點(diǎn)D作DE∥AC,CE與DE相交于點(diǎn)E.
(1)求證:四邊形OCED是矩形.
(2)若AB=4,∠ABC=60°,求矩形OCED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,點(diǎn)P是CD的中點(diǎn),∠BCD=60°,射線AP交BC的延長(zhǎng)線于點(diǎn)E,射線BP交DE于點(diǎn)K,點(diǎn)O是線段BK的中點(diǎn),作BM⊥AE于點(diǎn)M,作KN⊥AE于點(diǎn)N,連結(jié)MO、NO,以下四個(gè)結(jié)論:①△OMN是等腰三角形;②tan∠OMN=;③BP=4PK;④PMPA=3PD2,其中正確的是( 。
A.①②③B.①②④C.①③④D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,矩形DEFG的頂點(diǎn)G、F分別在AC、BC上,DE在AB上,設(shè)AG=5,AD=4,求△ADG與△FEB的面積比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知矩形紙片中,,,點(diǎn)為邊上的動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)、重合),如圖1所示,沿折痕翻折得到,設(shè).
(1)當(dāng)、、在同一直線上時(shí),求的值;
(2)如圖2,點(diǎn)在邊上,沿再次折疊紙片,使點(diǎn)的對(duì)應(yīng)點(diǎn)在直線上,
①求的最小值;
②點(diǎn)能否落在邊上?若能,求出的值,若不能,試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀對(duì)話,解答問(wèn)題:
(1)分別用a、b表示小冬從小麗、小兵袋子中抽出的卡片上標(biāo)有的數(shù)字,請(qǐng)用樹(shù)狀圖法或列表法寫(xiě)出(a,b)的所有取值;
(2)求在(a,b)中使關(guān)于x的一元二次方程x2﹣ax+2b=0有實(shí)數(shù)根的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)(問(wèn)題發(fā)現(xiàn))如圖1,和均為等邊三角形,點(diǎn),,在同一條直線上.填空:①線段,之間的數(shù)量關(guān)系為______;②_____°.
(2)(類比探究)如圖2,和均為等腰直角三角形,,,,點(diǎn),,在同一條直線上,請(qǐng)判斷線段,之間的數(shù)量關(guān)系及的度數(shù),并給出證明.
(3)(解決問(wèn)題)如圖3,在中,,,,點(diǎn)在邊上,于點(diǎn),,將繞點(diǎn)旋轉(zhuǎn),當(dāng)所在直線經(jīng)過(guò)點(diǎn)時(shí),的長(zhǎng)是多少?(直接寫(xiě)出答案)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com