【題目】已知:點D、E、F分別是等邊△ABC三邊上的三等分點,AD、BE、CF兩兩相交于P、Q、R點,(如圖所示),求△PQR的面積與△ABC面積的比值.
【答案】S△PQR:S△ABC=1:7.
【解析】
可作AG∥BC交BE延長線于點G,作DH∥AB交CF于點H,由平行線分線段成比例可得線段之間的比例關系,進而轉化為三角形的面積關系,即可求解結論.
解:作AG∥BC交BE延長線于點G,作DH∥AB交CF于點H,
則得:
AG:BC=AE:EC=1:2,AG:BD=3:4,
又由于DH:BF=1:3,DH:AF=1:6,
所以DR:AR=1:6,DR:DA=1:7,
從而S△CDR=S△BFC=S△ABC,
同理可得S△BFQ= S△APE=S△ABC,
∵S△PQR=S△BCE(S△BCFS△BFQ)(S△ACDS△APES△CDR)=S△ABC-(S△ABC S△ABC)(S△ABC S△ABC S△ABC)= S△ABC
因此S△PQR:S△ABC=1:7.
科目:初中數學 來源: 題型:
【題目】已知,在Rt△ABC中,∠ACB=90°,D是BC邊上一點,連接AD,分別以CD和AD為直角邊作Rt△CDE和Rt△ADF,使∠DCE=∠ADF=90°,點E,F在BC下方,連接EF.
(1)如圖1,當BC=AC,CE=CD,DF=AD時,
求證:①∠CAD=∠CDF,
②BD=EF;
(2)如圖2,當BC=2AC,CE=2CD,DF=2AD時,猜想BD和EF之間的數量關系?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c經過點A(﹣1,0)和點C(0,4),交x軸正半軸于點B,連接AC,點E是線段OB上一動點(不與點O,B重合),以OE為邊在x軸上方作正方形OEFG,連接FB,將線段FB繞點F逆時針旋轉90°,得到線段FP,過點P作PH∥y軸,PH交拋物線于點H,設點E(a,0).
(1)求拋物線的解析式.
(2)若△AOC與△FEB相似,求a的值.
(3)當PH=2時,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數的圖象如圖,根據圖象回答下列問題:
(1)寫出方程的兩個根;
(2)寫出不等式的解集;
(3)寫出不等式的解集;
(4)如果方程無實數根,求的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點C、D在線段AB上,△PCD是等邊三角形,且△ACP∽△PDB.
(1)求∠APB的大。
(2)說明線段AC、CD、BD之間的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(9分)九年級數學興趣小組經過市場調查,得到某種運動服每月的銷量與售價的相關信息如下表:
售價(元/件) | 100 | 110 | 120 | 130 | … |
月銷量(件) | 200 | 180 | 160 | 140 | … |
已知該運動服的進價為每件60元,設售價為元.
(1)請用含x的式子表示:①銷售該運動服每件的利潤是 元;②月銷量是 件;(直接寫出結果)
(2)設銷售該運動服的月利潤為元,那么售價為多少時,當月的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水果批發(fā)商場經銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經市場調查發(fā)現,在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.
(1)現該商場要保證每天盈利6 000元,同時又要顧客得到實惠,那么每千克應漲價多少元?
(2)若該商場單純從經濟角度看,每千克這種水果漲價多少元,能使商場獲利最多?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC;則下列結論:①abc<0;②>0;③ac-b+1=0;④OAOB=-.其中正確的結論( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列這些美麗的圖案都是在“幾何畫板”軟件中利用旋轉的知識在一個圖案的基礎上加工而成的,每一個圖案都可以看作是它的“基本圖案”繞著它的旋轉中心旋轉得來的,旋轉的角度正確的為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com