(本小題滿分10分)
在我們學(xué)習(xí)過的數(shù)學(xué)教科書中,有一個數(shù)學(xué)活動,其具體操作過程是:
第一步:對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開(如圖1);
第二步:再一次折疊紙片,使點A落在EF上,并使折痕經(jīng)過點B,得到折痕BM,同時得到線段BN(如圖2)
請解答以下問題:
1.(1)如圖2,若延長MN交BC于P,△BMP是什么三角形?請證明你的結(jié)論.
2.(2)在圖2中,若AB=a,BC=b,a、b滿足什么關(guān)系,才能在矩形紙片ABCD上剪出符合(1)中結(jié)論的三角形紙片BMP ?
1.(1)△BMP是等邊三角形.
證明:連結(jié)AN ∵EF垂直平分AB ∴AN = BN
由折疊知 AB = BN
∴AN = AB = BN ∴△ABN為等邊三角形
∴∠ABN =60° ∴∠PBN =30°
又∵∠ABM =∠NBM =30°,∠BNM =∠A =90°
∴∠BPN =60°∠MBP =∠MBN +∠PBN =60°
∴∠BMP =60°
∴∠MBP =∠BMP =∠BPM =60°
∴△BMP為等邊三角形 .
2.(2)要在矩形紙片ABCD上剪出等邊△BMP,則BC ≥BP
在Rt△BNP中, BN = BA =a,∠PBN =30°
∴BP = ∴b≥ ∴a≤b .
∴當(dāng)a≤b時,在矩形上能剪出這樣的等邊△BMP
【解析】略
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年河北省中考模擬試卷數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)
如圖,在平面直角坐標(biāo)系中,直線L:y=-2x-8分別與x軸、y軸相交于A、B兩點,點P(0,k)是y軸的負半軸上的一個動點,以P為圓心,3為半徑作⊙P。
(1)連結(jié)PA,若PA=PB,試判斷⊙P與X軸的位置關(guān)系,并說明理由;
(2)當(dāng)K為何值時,以⊙P與直線L的兩個交點和圓心P為頂點的三角形是正三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年四川省鹽源縣民族中學(xué)中考模擬試題數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)如圖,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.動點P從D點出發(fā)沿DC以每秒1個單位的速度向終點C運動,動點Q從C點出發(fā)沿CB以每秒2個單位的速度向B點運動.兩點同時出發(fā),當(dāng)P點到達C點時,Q點隨之停止運動.
【小題1】(1)求梯形ABCD的面積;
【小題2】(2)當(dāng)P點離開D點幾秒后,PQ//AB;
【小題3】(3)當(dāng)P、Q、C三點構(gòu)成直角三角形時,求點P從點D運動的時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)如圖,在平面直角坐標(biāo)系中,點A、B、C、P的坐標(biāo)分別為(0,1)、(-1,0)、(1,0)、(-1,-1)。
【小題1】(1)求經(jīng)過A、B、C三點的拋物線的表達式;
【小題2】(2)以P為位似中心,將△ABC放大,使得放大后的△A1B1C1
與△OAB對應(yīng)線段的比為3:1,請在右圖網(wǎng)格中畫出放大
后的△A1B1C1;(所畫△A1B1C1與△ABC在點P同側(cè));
【小題3】(3)經(jīng)過A1、B1、C1三點的拋物線能否由(1)中的拋物線平
移得到?請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆河南省商丘市九年級上學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本小題滿分10分)
在圖1至圖3中,直線MN與線段AB相交
于點O,∠1 = ∠2 = 45°.
【小題1】(1)如圖1,若AO = OB,請寫出AO與BD
的數(shù)量關(guān)系和位置關(guān)系;
【小題2】(2)將圖1中的MN繞點O順時針旋轉(zhuǎn)得到
圖2,其中AO = OB.
求證:AC = BD,AC ⊥ BD;
【小題3】(3)將圖2中的OB拉長為AO的k倍得到
圖3,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com