【題目】如圖,在△ABC 中,∠C=90°
(1)利用尺規(guī)作∠B 的角平分線交AC于D,以BD為直徑作⊙O交AB于E(保留作圖痕跡,不寫作法);
(2)綜合應用:在(1)的條件下,連接DE ①求證:CD=DE;
②若sinA= ,AC=6,求AD.
【答案】
(1)解:
(2)解:①∵BD為⊙O的直徑;
∴∠BED=90°,
又∵∠C=90°;
∴DE⊥AB,DC⊥BC;
又∵BD平分∠ABC;
∴DE=DC;
②在Rt△ADE中,sinA=
∵sinA=
∴ =
設DC=DE=3x,AD=5x
∵AC=AD+DC
∴3x+5x=6x=
AD=5x=5× =
【解析】(1)根據(jù)題意作出圖形即可;(2)有BD為⊙O的直徑;得到∠BED=90°,根據(jù)角平分線的性質即可得到結論;(3)解直角三角形即可得到結論.
【考點精析】掌握圓周角定理和解直角三角形是解答本題的根本,需要知道頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點A,B,C在一次函數(shù)y=-2x+m的圖象上,它們的橫坐標依次為-1,1,2,分別過這些點作x軸與y軸的垂線,則圖中陰影部分的面積之和是( )
A. 3(m-1) B. (m-2) C. 1 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若函數(shù)y=kx﹣3的圖象如圖所示,則一元二次方程x2+x+k﹣1=0根的存在情況是( )
A.有兩個不相等的實數(shù)根
B.有兩個相等的實數(shù)根
C.沒有實數(shù)根
D.無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知CA=CB,點E,F在射線CD上,滿足∠BEC=∠CFA,且∠BEC+∠ECB+∠ACF=180°.
(1)求證:△BCE≌△CAF;
(2)試判斷線段EF,BE,AF的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個三角形有一條邊上的高等于這條邊的一半,那么我們把這個三角形叫做半高三角形.已知直角三角形是半高三角形,且斜邊,則它的周長等于_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一個面積為1的正方形,經過一次“生長”后,在它的左右肩上生出兩個小正方形,如圖①,其中,三個正方形圍成的三角形是直角三角形,再經過一次“生長”后,變成了圖②,如果繼續(xù)“生長”下去 ,它將變得“枝繁葉茂”,則“生長”了2 014次后形成的圖形中所有正方形的面積和是( )
A. 2 012 B. 2 013 C. 2 014 D. 2 015
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正比例函數(shù)y1=k1x(k1>0)與反比例函數(shù)y2= (k2>0)部分圖象如圖所示,則不等式k1x> 的解集在數(shù)軸上表示正確的是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com