【題目】如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且x1<x2與y軸交于點(diǎn)C(0,4),其中x1,x2是方程x2﹣4x﹣12=0的兩個(gè)根.
(1)求拋物線的解析式;
(2)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN∥BC,交AC于點(diǎn)N,連結(jié)CM,當(dāng)△CMN的面積最大時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?如果存在,直接寫出所有滿足條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)拋物線的解析式為y=x2﹣x﹣4;(2)點(diǎn)M的坐標(biāo)為(2,0);(3)F1(﹣6,0),F2(2,0),F3(8﹣2,0),F4(8+2,0).
【解析】試題分析:(1)根據(jù)一元二次方程解法得出A,B兩點(diǎn)的坐標(biāo),再利用交點(diǎn)式求出二次函數(shù)解析式;
(2)首先判定△MNA∽△BCA.得出,進(jìn)而得出函數(shù)的最值;
(3)分別根據(jù)當(dāng)AF為平行四邊形的邊時(shí),AF平行且等于DE與當(dāng)AF為平行四邊形的對(duì)角線時(shí),分析得出符合要求的答案.
試題解析:(1)∵x2﹣4x﹣12=0,
∴x1=﹣2,x2=6.
∴A(﹣2,0),B(6,0),
又∵拋物線過點(diǎn)A、B、C,故設(shè)拋物線的解析式為y=a(x+2)(x﹣6),
將點(diǎn)C的坐標(biāo)代入,求得a=,
∴拋物線的解析式為y=x2﹣x﹣4;
(2)設(shè)點(diǎn)M的坐標(biāo)為(m,0),過點(diǎn)N作NH⊥x軸于點(diǎn)H(如圖(1)).
∵點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)B的坐標(biāo)為(6,0),
∴AB=8,AM=m+2,
∵MN∥BC,
∴△MNA∽△BCA.
∴=,
∴=,
∴NH=,
∴S△CMN=S△ACM﹣S△AMN=AMCO﹣AMNH,
=m+2)(4﹣)=﹣m2+m+3,
=﹣(m﹣2)2+4.
∴當(dāng)m=2時(shí),S△CMN有最大值4.
此時(shí),點(diǎn)M的坐標(biāo)為(2,0);
(3)∵點(diǎn)D(4,k)在拋物線y=x2﹣x﹣4上,
∴當(dāng)x=4時(shí),k=﹣4,
∴點(diǎn)D的坐標(biāo)是(4,﹣4).
①如圖(2),當(dāng)AF為平行四邊形的邊時(shí),AF平行且等于DE,
∵D(4,﹣4),
∴DE=4.
∴F1(﹣6,0),F2(2,0),
②如圖(3),當(dāng)AF為平行四邊形的對(duì)角線時(shí),設(shè)F(n,0),
∵點(diǎn)A的坐標(biāo)為(﹣2,0),
則平行四邊形的對(duì)稱中心的橫坐標(biāo)為:,
∴平行四邊形的對(duì)稱中心坐標(biāo)為(,0),
∵D(4,﹣4),
∴E'的橫坐標(biāo)為:﹣4+=n﹣6,
E'的縱坐標(biāo)為:4,
∴E'的坐標(biāo)為(n﹣6,4).
把E'(n﹣6,4)代入y=x2﹣x﹣4,得n2﹣16n+36=0.
解得n=8±2.F3(8﹣2,0),F4(8+2,0),
綜上所述F1(﹣6,0),F2(2,0),F3(8﹣2,0),F4(8+2,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】銅仁某校高中一年級(jí)組建籃球隊(duì),對(duì)甲、乙兩名備選同學(xué)進(jìn)行定位投籃測(cè)試,每次投10個(gè)球,共投10次.甲、乙兩名同學(xué)測(cè)試情況如圖所示:
根據(jù)圖6提供的信息填寫下表:
平均數(shù) | 眾數(shù) | 方差 | |
甲 | |||
乙 |
如果你是高一學(xué)生會(huì)文體委員,會(huì)選擇哪名同學(xué)進(jìn)入籃球隊(duì)?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過O點(diǎn)作射線OC,使,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM在直線AB的下方.
(1)將圖1中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時(shí)三角板旋轉(zhuǎn)的角度為______度;
(2)在(1)旋轉(zhuǎn)過程中,當(dāng)旋轉(zhuǎn)至圖3的位置時(shí),使得OM在∠BOC的內(nèi)部,ON落在直線AB下方,試探究∠COM與∠BON之間滿足什么等量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句中正確的有( )
①經(jīng)過一點(diǎn),有且只有一條直線與已知直線平行;②有公共頂點(diǎn)且和為的兩個(gè)角是鄰補(bǔ)角;③兩條直線被第三條直線所截,同旁內(nèi)角互補(bǔ);④不相交的兩條直線叫做平行線;⑤直線外的一點(diǎn)到已知直線的垂線段叫做點(diǎn)到直線的距離;
A.0個(gè);B.1個(gè);C.2個(gè);D.3個(gè);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BE∥AO,
解:因?yàn)?/span>BE∥AO.(已知)
所以
因?yàn)?/span>,(已知 )
所以 .(等量代換)
.(等式性質(zhì))
因?yàn)?/span> ,(已求)
所以 .(等量代換)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知∠BDC=∠EFD,∠AED=∠ACB.
(1)試判斷∠DEF與∠B的大小關(guān)系,并說明理由;
(2)若D、E、F分別是AB、AC、CD邊上的中點(diǎn),S△DEF=4,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過對(duì)角線BD的中點(diǎn)O作直線EF,分別交DA的延長(zhǎng)線,AB, DC,BC的延長(zhǎng)線于點(diǎn)E,M,N,F.
(1)求證:△ODE≌△OBF;
(2)除(1)中這對(duì)全等三角形外,再寫出兩對(duì)全等三角形(不需要證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,,BD平分∠ABC,BC上有動(dòng)點(diǎn)P.
(1)DP⊥BC時(shí)(如圖1),求證:;
(2)DP平分∠BDC時(shí)(如圖2),BD、CD、CP三者有何數(shù)量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料1:一般地,個(gè)相同因數(shù)相乘:記為.如,此時(shí),3叫做以2為底的8的對(duì)數(shù),記為(即)
(1)計(jì)算__________,__________.
材料2:新規(guī)定一種運(yùn)算法則:自然數(shù)1到的連乘積用表示,例如:,,,,…在這種規(guī)定下
(2)求出滿足該等式的:
(3)當(dāng)為何值時(shí),
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com