【題目】如圖,在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是 的中點,點D在OB上,點E在OB的延長線上,當正方形CDEF的邊長為2 時,則陰影部分的面積為( )

A.2π﹣4
B.4π﹣8
C.2π﹣8
D.4π﹣4

【答案】A
【解析】解:∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是 的中點,
∴∠COD=45°,
∴OC= =4,
∴陰影部分的面積=扇形BOC的面積﹣三角形ODC的面積
= ×π×42 ×(2 2
=2π﹣4.
故選:A.
【考點精析】掌握正方形的性質(zhì)和扇形面積計算公式是解答本題的根本,需要知道正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各圖是選自歷屆世博會徽中的圖案,其中是中心對稱圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組: ,并把它的解在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B,C,D都在⊙O上, 的度數(shù)等于84°,CA是∠OCD的平分線,則∠ABD+∠CAO=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=kx2+(2k+1)x+1(k為實數(shù))
(1)寫出其中的兩個特殊函數(shù),使它們的圖象不全是拋物線,并在同一直角坐標系中,用描點法畫出這兩個特殊函數(shù)的圖象;
(2)根據(jù)所畫圖象,猜想出:對任意實數(shù)k,函數(shù)的圖象都具有的特征,并給予證明;
(3)對任意負實數(shù)k,當x<m時,y隨著x的增大而增大,試求出m的一個值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘漁船位于燈塔P的北偏東30°方向,距離燈塔18海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東55°方向上的B處,此時漁船與燈塔P的距離約為海里(結(jié)果取整數(shù))(參考數(shù)據(jù):sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線y=x2+ 與y軸相交于點A,點B與點O關(guān)于點A對稱

(1)填空:點B的坐標是
(2)過點B的直線y=kx+b(其中k<0)與x軸相交于點C,過點C作直線l平行于y軸,P是直線l上一點,且PB=PC,求線段PB的長(用含k的式子表示),并判斷點P是否在拋物線上,說明理由;
(3)在(2)的條件下,若點C關(guān)于直線BP的對稱點C′恰好落在該拋物線的對稱軸上,求此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某職業(yè)高中機電班共有學(xué)生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.
(1)該班男生和女生各有多少人?
(2)某工廠決定到該班招錄30名學(xué)生,經(jīng)測試,該班男、女生每天能加工的零件數(shù)分別為50個和45個,為保證他們每天加工的零件總數(shù)不少于1460個,那么至少要招錄多少名男學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中裝有大小、質(zhì)地完全相同的3只球,球上分別標有2,3,5三個數(shù)字.
(1)從這個袋子中任意摸一只球,所標數(shù)字是奇數(shù)的概率是
(2)從這個袋子中任意摸一只球,記下所標數(shù)字,不放回,再從從這個袋子中任意摸一只球,記下所標數(shù)字.將第一次記下的數(shù)字作為十位數(shù)字,第二次記下的數(shù)字作為個位數(shù)字,組成一個兩位數(shù).求所組成的兩位數(shù)是5的倍數(shù)的概率.(請用“畫樹狀圖”或“列表”的方法寫出過程)

查看答案和解析>>

同步練習(xí)冊答案