【題目】已知代數(shù)式,當(dāng)時,該代數(shù)式的值為3.
(1)求c的值;
(2)已知:當(dāng)時,該代數(shù)式的值為0.
①求:當(dāng)時,該代數(shù)式的值;
②若,,,試比較a與d的大小,并說明理由.
【答案】(1)c=3;(2)6;a<d.
【解析】
(1)將x=0代入代數(shù)式求出c的值即可;
(2)①將x=1代入代數(shù)式即可求出a+b的值,再將x=-1代入代數(shù)式可得結(jié)果;
②根據(jù)條件判斷a>1,0<d<或-<d<0,可比較大。
(1)解:∵當(dāng)x為0時,代數(shù)式的值為3,
∴ c=3
(2)①∵當(dāng)時, 代數(shù)式的值為0,
∴ a+b+c=0
即a+b與c互為相反數(shù).
∴ a+b=-3.
∴當(dāng)時,
②∵ab>0,且a+b=-3<0,
∴ a<0, b<0.
∵,
∴ a<-1.
∵,且c=3,
∴<1.
∴
∴ a<d.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折疊長方形紙片ABCD,使點D落在邊BC上的點F處,折痕為AE.已知AB=3cm,BC=5cm.則EC的長為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】①在數(shù)軸上沒有點能表示+1;②無理數(shù)是開不盡方的數(shù);③存在最小的實數(shù);④4的平方根是±2,用式子表示是=±2;⑤某數(shù)的絕對值,相反數(shù),算術(shù)平方根都是它本身,則這個數(shù)是0,其中正確的是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點O是直線AB上一點,∠COD是直角,OE平分∠BOC.
(1)①、如圖1,若∠AOC=50°,求∠DOE的度數(shù);
②、如圖1,若∠AOC=α,直接寫出∠DOE的度數(shù)(用含α的代數(shù)式表示);
(2)將圖1中的∠COD按順時針方向旋轉(zhuǎn)至圖2所示的位置.
探究∠AOC與∠DOE的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延長線于點E.CE=2,延長CE,BA交于點F.
(1)求證:△ADB≌△AFC;
(2)求BD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】金秋十月,長沙市某中學(xué)組織七年級學(xué)生去某綜合實踐基地進行秋季社會實踐活動,每人需購買一張門票,該綜合實踐基地的門票價格為每張240元,如果一次購買500張以上(不含500張)門票,則門票價格為每張220元,請回答下列問題:
(1)列式表示n個人參加秋季社會實踐活動所需錢數(shù);
(2)某校用132000元可以購買多少張門票;
(3)如果我校490人參加秋季社會實踐,怎樣購買門票花錢最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BD平分∠ABC,
(1)作圖:作BC邊的垂直平分線分別交BC,BD于點E,F(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下,連接CF,若∠A=60°,∠ABD=24°,求∠ACF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y= x2+bx+c與x軸交于A(5,0)、B(﹣1,0)兩點,過點A作直線AC⊥x軸,交直線y=2x于點C;
(1)求該拋物線的解析式;
(2)求點A關(guān)于直線y=2x的對稱點A′的坐標(biāo),判定點A′是否在拋物線上,并說明理由;
(3)點P是拋物線上一動點,過點P作y軸的平行線,交線段CA′于點M,是否存在這樣的點P,使四邊形PACM是平行四邊形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx經(jīng)過A(4,0),B(1,3)兩點,點B、C關(guān)于拋物線的對稱軸l對稱,過點B作直線BH⊥x軸,交x軸于點H.
(1)求拋物線的解析式;
(2)若點M在直線BH上運動,點N在x軸上運動,是否存在這樣的點M、N,使得以點M為直角頂點的△CNM是等腰直角三角形?若存在,請求出點M、N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com