【題目】二次函數(shù)的圖象如圖所示,則下列關(guān)系正確的是(

A. B. C. D.

【答案】D

【解析】

由拋物線的開口方向判斷a0的關(guān)系,再利用根據(jù)圖象可得出圖象與x軸負(fù)半軸交點(diǎn)大于-1,得出當(dāng)x=-1時,a-b+c>0,由拋物線與x軸的交于12之間,將2代入得出4a+2b+c>0,然后根據(jù)對稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.

A.∵該拋物線的開口方向向上,

a>0;故此選項(xiàng)錯誤;

B.∵根據(jù)圖象可得出圖象與x軸負(fù)半軸交點(diǎn)大于1,

∴當(dāng)x=1時,ab+c>0,故此選項(xiàng)錯誤;

C.∵該拋物線與x軸交于12之間,

∴結(jié)合圖象得出4a+2b+c>0,故此選項(xiàng)錯誤;

D. 由圖象可知,該拋物線與x軸有兩個不同的交點(diǎn),

b24ac>0;故此選項(xiàng)正確.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店兩次購進(jìn)一批同型號的熱水壺和保溫杯,第一次購進(jìn) 12 個熱水壺和 15 個保溫杯,共用去資金 2850 元,第二次購進(jìn) 20 個熱水壺和 30 個保溫杯,用去資金 4900元(購買同一商品的價格不變)

1)求每個熱水壺和保溫杯的采購單價各是多少元?

2)若商場計(jì)劃再購進(jìn)同種型號的熱水壺和保溫杯共 80 個,求所需購貨資金 w(元) ,購買熱水壺的數(shù)量 m()的函數(shù)表達(dá)式.

3)在(2)的基礎(chǔ)上,若準(zhǔn)備購買保溫杯的數(shù)量是熱水壺數(shù)量的 3 倍,則該商店需要準(zhǔn)備多少元的購貨資金?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在RtABC中,∠ACB=90°,M是邊AB的中點(diǎn),連接CM并延長到點(diǎn)E,使得EM=AB,D 是邊AC上一點(diǎn),且AD=BC,連接DE.則∠CDE的度數(shù)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,長方形OABC的邊OC=2,將過點(diǎn)B的直線y=x﹣3x軸交于點(diǎn)E.

(1)求點(diǎn)B的坐標(biāo);

(2)連結(jié)CE,求線段CE的長;

(3)若點(diǎn)P在線段CB上且OP=,求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,A=70°B=50°,點(diǎn)D,E分別為AB,AC上的點(diǎn),沿DE折疊,使點(diǎn)A落在BC邊上點(diǎn)F處,若EFC為直角三角形,則BDF的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)的圖象的一部分,圖象過點(diǎn),對稱軸是直線,給出五個結(jié)論:;②;③;④;⑤.其中正確的是________(把你認(rèn)為正確的序號都填上,答案格式如:”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,ABBC,AB = BCEBC上一點(diǎn),連接AE,過點(diǎn)CCFAE,交AE的延長線于點(diǎn)F,連結(jié)BF,過點(diǎn)BBGBFAEG

1)求證:△ABG ≌ △CBF

2)若EBC中點(diǎn),求證:CF + EF = EG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形AOBC中,OB=6,OA=4,分別以O(shè)B,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系.F是邊BC上一點(diǎn)(不與B、C兩點(diǎn)重合),過點(diǎn)F的反比例函數(shù)y=(k>0)圖象與AC邊交于點(diǎn)E.

(1)請用k的表示點(diǎn)E,F(xiàn)的坐標(biāo);

(2)若OEF的面積為9,求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,AB∥CDAD//BC,點(diǎn)E,F在對角線AC上,且AE=CF,請你分別以E,F為一端點(diǎn),和圖中已標(biāo)字母的某點(diǎn)連成兩條相等的新線段(只需證明一組線段相等即可).

1)連接 ;

2)結(jié)論: =

3)證明:

查看答案和解析>>

同步練習(xí)冊答案