【題目】如圖,△ABC是等腰直角三角形,AC=BC=a,以斜邊AB上的點O為圓心的圓分別與AC,BC相切于點E,F(xiàn),與AB分別交于點G,H,且EH的延長線和CB的延長線交于點D,則CD的長為

【答案】 a
【解析】解:如圖,連接OE、OF,
∵由切線的性質(zhì)可得OE=OF=⊙O的半徑,∠OEC=∠OFC=∠C=90°,
∴OECF是正方形,
∵由△ABC的面積可知 ×AC×BC= ×AC×OE+ ×BC×OF,
∴OE=OF= a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a,
∵由切割線定理可得BF2=BHBG,
a2=BH(BH+a),
∴BH= a或BH= a(舍去),
∵OE∥DB,OE=OH,
∴△OEH∽△BDH,
,
∴BH=BD,CD=BC+BD=a+ a= a.
故答案為: a.
連接OE、OF,由切線的性質(zhì)結合結合直角三角形可得到正方形OECF,并且可求出⊙O的半徑為0.5a,則BF=a﹣0.5a=0.5a,再由切割線定理可得BF2=BHBG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性質(zhì)即可求出BH=BD,最終由CD=BC+BD,即可求出答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】雙胞胎兄弟小明和小亮在同一班讀書,周五1600時放學后,小明和同學走路回家,途中沒有停留,小亮騎車回家,他們各自與學校的距離s()與用去的時間t()的關系如圖所示,根據(jù)圖象提供的有關信息下列說法中錯誤的是( )

A. 兄弟倆的家離學校1000

B. 他們同時到家,用時30

C. 小明的速度為50/

D. 小亮中間停留了一段時間后再以80/分的速度騎回家

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1=68°,∠2=68°,∠3=112°.在下列解答中,填空:

(1)因為∠1=68°,∠2=68°(已知),

所以__________(等量代換).

所以_________________________________

(2)因為∠3+∠4=180°(鄰補角的定義),∠3=112°

,所以____________

又因為∠2=68°,

所以___________(等量代換),

所以_____________________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對下列代數(shù)式作出解釋,其中不正確的是(

A. a-b:今年小明b歲,小明的爸爸a歲,小明比他爸爸。a-b)歲

B. a-b:今年小明b歲,小明的爸爸a歲,則小明出生時,他爸爸為(a-b)歲

C. ab:長方形的長為acm,寬為bcm,長方形的面積為ab

D. ab:三角形的一邊長為acm,這邊上的高為bcm,此三角形的面積為ab

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用同樣大小的小正方形紙片,按下圖的方式拼正方形

規(guī)律:第①個圖形中有1個小正方形;

第②個圖形比第①個圖形多3個小正方形;

第③個圖形比第②個圖形多5個小正方形;……

(n+1)個圖形比第n個圖形多________個小正方形;

可發(fā)現(xiàn)以下結論:(1)1+3+5+……+(2n-1)= ____________;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】湖州市在2017年被評為“全國文明城市”,在評選過程中,湖州市環(huán)衛(wèi)處每天需負責市區(qū)范圍420千米城市道路的清掃工作,現(xiàn)有環(huán)衛(wèi)工人直接清掃和道路清掃車兩種馬路清掃方式.已知20名環(huán)衛(wèi)工人和1輛道路清掃車每小時可以清掃20千米馬路,30名環(huán)衛(wèi)工人和3輛道路清掃車每小時可以清掃42千米的馬路.

(1)1名環(huán)衛(wèi)工人和1輛道路清掃車每小時各能清掃多長的馬路?

(2)已知2017年環(huán)衛(wèi)處安排了50名環(huán)衛(wèi)工人參與了直接清掃工作,為保證順利完成每日的420千米清掃工作,需派出多少輛道路清掃車參與工作(已知2017年環(huán)衛(wèi)工人與清掃車每天工作時間為6小時)?

(3)為了鞏固文明城市創(chuàng)建成果,從2018年5月開始,環(huán)衛(wèi)處新增了一輛清掃車參與工作,同時又增加了若干個環(huán)衛(wèi)工人參與直接清掃,使得每日能夠較早的完成清掃工作。2018年6月市環(huán)衛(wèi)處擴大清掃范圍60千米,同時又增加了20名環(huán)衛(wèi)工人直接參與清掃,此時環(huán)衛(wèi)工人和清掃車每日工作時間仍與5月份相同,那么2018年5月環(huán)衛(wèi)處增加了多少名環(huán)衛(wèi)工人參與直接清掃?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解決農(nóng)民工子女入學難的問題,我市建立了一套進城農(nóng)民工子女就學的保障機制,其中一項就是免交借讀費.據(jù)統(tǒng)計,2004年秋季有名農(nóng)民工子女進入主城區(qū)中小學學習,預計2005年秋季進入主城區(qū)中小學學習的農(nóng)民工子女比2004年有所增加,其中小學增加,中學增加,這樣,2005年秋季將新增名農(nóng)民工子女在主城區(qū)中小學學習.

(1)如果按小學每生每年收借讀費元,中學每生每年收借讀費元計算,求2005年新增加的名中小學學生共免收多少借讀費”?

(2)如果小學每增加名學生需配備名教師,中學每增加名學生需配備名教師,若按2005年秋季入學后,農(nóng)民工子女在主城區(qū)中小學就讀的學生增加的人數(shù)計算,一共需要配備多少名中小學教師?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點P在△ABC的邊AC上,下列條件中,不能判斷△ABP∽△ACB的是(
A.∠ABP=∠C
B.∠APB=∠ABC
C.AB2=AP?AC
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC為等腰直角三角形,∠BAC=90°,BC=2,E為AB上任意一動點,以CE為斜邊作等腰Rt△CDE,連接AD,下列說法:①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四邊形ABCD的面積有最大值,且最大值為 .其中,正確的結論是(
A.①②④
B.①③⑤
C.②③④
D.①④⑤

查看答案和解析>>

同步練習冊答案