【題目】已知,如圖,AD是△ABC的角平分線,DEDF分別是△ABD和△ACD的高。求證:AD垂直平分EF

【答案】見(jiàn)解析

【解析】

DEAB,DFAC,得出∠AED=AFD;因?yàn)?/span>AD是△ABC的角平分線,可得∠1=2,DE=DF,推出△AED≌△AFD,即AE=AF,所以點(diǎn)AEF的垂直平分線上,又DE=DF,推出點(diǎn)DEF的垂直平分線上,即可證明AD垂直平分EF

證明:∵DEAB,DFAC

∴∠AED=AFD,

又∵AD是△ABC的角平分線,

∴∠1=2,DE=DF

∴△AED≌△AFDAAS),

AE=AF

∴點(diǎn)AEF的垂直平分線上(到線段兩端距離相等的點(diǎn)在線段的垂直平分線上),

DE=DF

∴點(diǎn)DEF的垂直平分線上,

AD垂直平分EF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文具店某幾種型號(hào)的計(jì)算器每只進(jìn)價(jià) 12 元、售價(jià) 20 元,多買優(yōu)惠, 優(yōu)惠方法是:凡是一次買 10 只以上的,每多買一只,所買的全部計(jì)算器每只就 降價(jià) 0.1 元,例如:某人買 18 只計(jì)算器,于是每只降價(jià) 0.1×(1810)0.8(), 因此所買的 18 只計(jì)算器都按每只 19.2 元的價(jià)格購(gòu)買,但是每只計(jì)算器的最低售 價(jià)為 16 元.

(1)求一次至少購(gòu)買多少只計(jì)算器,才能以最低售價(jià)購(gòu)買? (2)寫(xiě)出該文具店一次銷售 x(x10)只時(shí),所獲利潤(rùn) y()x()之間的函數(shù)關(guān)系 式,并寫(xiě)出自變量 x 的取值范圍;

(3)一天,甲顧客購(gòu)買了 46 只,乙顧客購(gòu)買了 50 只,店主發(fā)現(xiàn)賣 46 只賺的錢反 而比賣 50 只賺的錢多,請(qǐng)你說(shuō)明發(fā)生這一現(xiàn)象的原因;當(dāng) 10x50 時(shí),為了 獲得最大利潤(rùn),店家一次應(yīng)賣多少只?這時(shí)的售價(jià)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,若,則還需添加的一個(gè)條件有( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商場(chǎng)銷售服裝,平均每天可售出件,每件盈利元,為擴(kuò)大銷售量,減少庫(kù)存,該商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),一件衣服降價(jià)元,每天可多售出件.

設(shè)每件降價(jià)元,每天盈利元,請(qǐng)寫(xiě)出之間的函數(shù)關(guān)系式;若商場(chǎng)每天要盈利元,同時(shí)盡量減少庫(kù)存,每件應(yīng)降價(jià)多少元?

每件降價(jià)多少元時(shí),商場(chǎng)每天盈利達(dá)到最大?最大盈利是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,AB=AC,點(diǎn)D,E在邊BC上,且BD=CE.

(1)求證: △ABD≌△ACE;

(2)∠B=40°,AB=BE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過(guò)O,A兩點(diǎn),且頂點(diǎn)在BC邊上,對(duì)稱軸交AC于點(diǎn)D,動(dòng)點(diǎn)P在拋物線對(duì)稱軸上,動(dòng)點(diǎn)Q在拋物線上.

(1)求拋物線的解析式;

(2)當(dāng)PO+PC的值最小時(shí),求點(diǎn)P的坐標(biāo);

(3)是否存在以A,C,P,Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出P,Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,東營(yíng)市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:

1接受問(wèn)卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為_(kāi)______°;

2請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

3若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù);

4若從對(duì)校園安全知識(shí)達(dá)到了解程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在第一個(gè)ABA中,∠B=20°,AB=AB,在AB上取一點(diǎn)C,延長(zhǎng)AAA,使得AA=AC,得到第二個(gè)AAC;在AC上取一點(diǎn)D,延長(zhǎng)AAA,使得AA=AD;,按此做法進(jìn)行下去,則第5個(gè)三角形中,以點(diǎn)A4為頂點(diǎn)的底角的度數(shù)為(

A.B.10°C.170°D.175°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店兩次購(gòu)進(jìn)一批同型號(hào)的熱水壺和保溫杯,第一次購(gòu)進(jìn) 12 個(gè)熱水壺和 15 個(gè)保溫杯,共用去資金 2850 元,第二次購(gòu)進(jìn) 20 個(gè)熱水壺和 30 個(gè)保溫杯,用去資金 4900元(購(gòu)買同一商品的價(jià)格不變)

1)求每個(gè)熱水壺和保溫杯的采購(gòu)單價(jià)各是多少元?

2)若商場(chǎng)計(jì)劃再購(gòu)進(jìn)同種型號(hào)的熱水壺和保溫杯共 80 個(gè),求所需購(gòu)貨資金 w(元) ,購(gòu)買熱水壺的數(shù)量 m(個(gè))的函數(shù)表達(dá)式.

3)在(2)的基礎(chǔ)上,若準(zhǔn)備購(gòu)買保溫杯的數(shù)量是熱水壺?cái)?shù)量的 3 倍,則該商店需要準(zhǔn)備多少元的購(gòu)貨資金?

查看答案和解析>>

同步練習(xí)冊(cè)答案