已知等腰梯形的一個內(nèi)角為60°,兩底長分別為15和19,則腰長為


  1. A.
    10
  2. B.
    9
  3. C.
    8
  4. D.
    4
D
分析:過D作DE∥AB,交BC于E,得出四邊形ABED是平行四邊形,推出AB=DE=DC,AD=BE=15,求出∠C=∠B=60°,得出△DEC是等邊三角形,求出CE=DC=AB=DE=4,即可求出答案.
解答:過D作DE∥AB,交BC于E,
∵AD∥BC,
∴四邊形ABED是平行四邊形,
∴AB=DE=DC,AD=BE=15,
∵四邊形ABCD是等腰梯形,
∴∠C=∠B=60°,
∴△DEC是等邊三角形,
∴CE=DC=AB=DE=BC-AD=19-15=4,
故選D.
點評:本題考查了等腰梯形性質(zhì),平行四邊形性質(zhì)和判定,等邊三角形的性質(zhì)和判定的應(yīng)用,關(guān)鍵是能把梯形轉(zhuǎn)化成平行四邊形和等腰三角形
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,BC=20cm,P、Q、M、N分別從A、B、C、D出發(fā)沿AD,BC,CB,DA方向在矩形的邊上同時運動,當有一個點先到達所在運動邊的另一個端點時,運動即停止.已知在相同時間內(nèi),若BQ=xcm(x≠0),則AP=2xcm,CM=3xcm,DN=x2cm.
(1)當x為何值時,以PQ,MN為兩邊,以矩形的邊(AD或BC)的一部分為第三邊構(gòu)成一個三角形;
(2)當x為何值時,以P、Q、M、N為頂點的四邊形是平行四邊形;
(3)以P、Q、M、N為頂點的四邊形能否為等腰梯形?如果能,求x的值;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AB是⊙O的直徑.若再增加一個條件,就可使四邊形ABCD成為等腰梯形.你所增加的條件是:
 

(只寫出一個條件,圖中不再增加其他的字母和線段).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

武漢歡樂谷要建一個圓形噴水池,如圖所示,計劃在噴水池的周邊靠近水面的位置安裝一圓噴水頭,時噴出的水柱在離池中心4m處達到最高,高度為6m,另外還要再噴水池的中心設(shè)計一個裝飾水壇,使各方向噴來的水柱在此匯合,已知裝飾水壇的高度為
10
3
m.
(1)建立平面直角坐標系,使拋物線水柱最高坐標為(4,6),裝飾水壇最高坐標為(0,
10
3
),求圓形噴水池的半徑.
(2)為防止游客戲水出現(xiàn)危險,公園再噴水池內(nèi)設(shè)置了一個六方形隔離網(wǎng).如圖,若該六邊形被圓形噴水池的直徑AB平分為兩個相同的等腰梯形,那么,當該等腰梯形的腰AD長為多少時,該梯形周長最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

武漢歡樂谷要建一個圓形噴水池,如圖所示,計劃在噴水池的周邊靠近水面的位置安裝一圓噴水頭,時噴出的水柱在離池中心4m處達到最高,高度為6m,另外還要再噴水池的中心設(shè)計一個裝飾水壇,使各方向噴來的水柱在此匯合,已知裝飾水壇的高度為
數(shù)學公式m.
(1)建立平面直角坐標系,使拋物線水柱最高坐標為(4,6),裝飾水壇最高坐標為(0,數(shù)學公式),求圓形噴水池的半徑.
(2)為防止游客戲水出現(xiàn)危險,公園再噴水池內(nèi)設(shè)置了一個六方形隔離網(wǎng).如圖,若該六邊形被圓形噴水池的直徑AB平分為兩個相同的等腰梯形,那么,當該等腰梯形的腰AD長為多少時,該梯形周長最大?

查看答案和解析>>

科目:初中數(shù)學 來源:2013年湖北省武漢市中考數(shù)學模擬試卷(十二)(解析版) 題型:解答題

武漢歡樂谷要建一個圓形噴水池,如圖所示,計劃在噴水池的周邊靠近水面的位置安裝一圓噴水頭,時噴出的水柱在離池中心4m處達到最高,高度為6m,另外還要再噴水池的中心設(shè)計一個裝飾水壇,使各方向噴來的水柱在此匯合,已知裝飾水壇的高度為
m.
(1)建立平面直角坐標系,使拋物線水柱最高坐標為(4,6),裝飾水壇最高坐標為(0,),求圓形噴水池的半徑.
(2)為防止游客戲水出現(xiàn)危險,公園再噴水池內(nèi)設(shè)置了一個六方形隔離網(wǎng).如圖,若該六邊形被圓形噴水池的直徑AB平分為兩個相同的等腰梯形,那么,當該等腰梯形的腰AD長為多少時,該梯形周長最大?

查看答案和解析>>

同步練習冊答案