在平面直角坐標(biāo)系xOy中,一塊含60°角的三角板作如圖擺放,斜邊AB在x軸上,直角頂點(diǎn)C在y軸正半軸上,已知點(diǎn)A(-1,0).

(1)請(qǐng)直接寫(xiě)出點(diǎn)B,C的坐標(biāo):B(    ),C(  ,  );
(2)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線(xiàn)解析式;
(3)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點(diǎn)E放在線(xiàn)段AB上(點(diǎn)E是不與A,B兩點(diǎn)重合的動(dòng)點(diǎn)),并使ED所在直線(xiàn)經(jīng)過(guò)點(diǎn)C.此時(shí),EF所在直線(xiàn)與(2)中的拋物線(xiàn)交于第一象限的點(diǎn)M.當(dāng)AE=2時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)P使△PEM是等腰三角形,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(1);(2);(3)存在,P點(diǎn)坐標(biāo)為(1,2)或(1,-2)或(1,)或(1,).

解析試題分析:(1)如圖,已知∠CAB=600,所以∠ACO=300,所以AC=2AO,又由A(-1,0).可知AO=1,所以AC=2,
在Rt△ACB中,∠ABC=300,所以AB=2AC,即AB=4,所以點(diǎn)B的坐標(biāo)是(3,0)由勾股定理可得CO=.所以
點(diǎn)B、C的坐標(biāo)分別為:、.
如圖,已知拋物線(xiàn)與x軸兩交點(diǎn)A、B的坐標(biāo),可設(shè)拋物線(xiàn)的解析式為:,再由點(diǎn)C
的坐標(biāo)求出a的值即可求解.
(3)求滿(mǎn)足使△PEM為等腰三角形的動(dòng)點(diǎn)P的坐標(biāo),一般地,當(dāng)一等腰三角形的兩腰不明確時(shí),應(yīng)分類(lèi)討論如下:①當(dāng)EP=EM時(shí),即以點(diǎn)E為圓心,以EM為半徑作圓與對(duì)稱(chēng)軸的交點(diǎn)即為所求點(diǎn)P;②當(dāng)EM=PM時(shí),即以點(diǎn)M為圓心,以EM為半徑作圓與對(duì)稱(chēng)軸的交點(diǎn)即為所求點(diǎn)P;③當(dāng)PE=PM時(shí),線(xiàn)段EM的垂直平分線(xiàn)與對(duì)稱(chēng)軸的交點(diǎn)即為所求點(diǎn)P.先由已知求證△CAE為等邊三角形,過(guò)點(diǎn)M作MN⊥x軸,求出點(diǎn)M的坐標(biāo),再依次求出上述各種情況下滿(mǎn)足條件的點(diǎn)P的坐標(biāo).
試題解析:
解:(1)、.
(2)∵點(diǎn)A(-1,0),B(3,0),
∴可設(shè)經(jīng)過(guò)A,B,C三點(diǎn)的拋物線(xiàn)的解析式為,
∵點(diǎn)C(0,)也在此拋物線(xiàn)上,
, 解得:,
∴此拋物線(xiàn)的解析式為
存在.如圖所示:

∵AE=2,
∴OE=1,
∴E(1,0),此時(shí),△CAE為等邊三角形.
∴∠AEC=∠A=60°.
又∵∠CEM=60°,
∴∠MEB=60°.
∴點(diǎn)C與點(diǎn)M關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng).
∵C(0,),
∴M(2,).
過(guò)M作MN⊥x軸于點(diǎn)N(2,0),
∴MN=
∴ EN=1.

若△PEM為等腰三角形,則:
①如圖1,當(dāng)EP=EM時(shí),∵EM=2,且點(diǎn)P在直線(xiàn)x=1上,∴P(1,2)或P(1,-2).
②如圖2,當(dāng)EM=PM時(shí),點(diǎn)M在EP的垂直平分線(xiàn)上,∴P(1,).
③如圖3,當(dāng)PE=PM時(shí),點(diǎn)P是線(xiàn)段EM的垂直平分線(xiàn)與直線(xiàn)x=1的交點(diǎn),∴P(1,).
∴綜上所述,存在P點(diǎn)坐標(biāo)為(1,2)或(1,-2)或(1,)或(1,)時(shí),△EPM為等腰三角形.
考點(diǎn),1、求二次函數(shù)解析式;2、動(dòng)點(diǎn)問(wèn)題-滿(mǎn)足等腰三角形的點(diǎn)的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線(xiàn)與x軸相交于兩點(diǎn)A(1,0),B(-3,0),與y軸相交于點(diǎn)C(0,3).
(1)求此拋物線(xiàn)的函數(shù)表達(dá)式;
(2)如果點(diǎn)是拋物線(xiàn)上的一點(diǎn),求△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知二次函數(shù)的圖像經(jīng)過(guò)原點(diǎn)及點(diǎn)A(1,2),與x軸相交于另一點(diǎn)B.

(1)求:二次函數(shù)的解析式及B點(diǎn)坐標(biāo);
(2)若將拋物線(xiàn)為對(duì)稱(chēng)軸向右翻折后,得到一個(gè)新的二次函數(shù),已知二次函數(shù)與x軸交于兩點(diǎn),其中右邊的交點(diǎn)為C點(diǎn).點(diǎn)P在線(xiàn)段OC上,從O點(diǎn)出發(fā)向C點(diǎn)運(yùn)動(dòng),過(guò)P點(diǎn)作x軸的垂線(xiàn),交直線(xiàn)AO于D點(diǎn),以PD為邊在PD的右側(cè)作正方形PDEF(當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)D.點(diǎn)E、點(diǎn)F也隨之運(yùn)動(dòng));
①當(dāng)點(diǎn)E在二次函數(shù)y1的圖像上時(shí),求OP的長(zhǎng).
②若點(diǎn)P從O點(diǎn)出發(fā)向C點(diǎn)做勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,同時(shí)線(xiàn)段OC上另一個(gè)點(diǎn)Q從C點(diǎn)出發(fā)向O點(diǎn)做勻速運(yùn)動(dòng),速度為每秒2個(gè)單位長(zhǎng)度(當(dāng)Q點(diǎn)到達(dá)O點(diǎn)時(shí)停止運(yùn)動(dòng),P點(diǎn)也同時(shí)停止運(yùn)動(dòng)).過(guò)Q點(diǎn)作x軸的垂線(xiàn),與直線(xiàn)AC交于G點(diǎn),以QG為邊在QG的左側(cè)作正方形QGMN(當(dāng)Q點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)G、點(diǎn)M、點(diǎn)N也隨之運(yùn)動(dòng)),若P點(diǎn)運(yùn)動(dòng)t秒時(shí),兩個(gè)正方形分別有一條邊恰好落在同一條直線(xiàn)上(正方形在x軸上的邊除外),求此刻t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某商店以16元/支的價(jià)格進(jìn)了一批鋼筆,如果以20元/支的價(jià)格售出,每月可以賣(mài)出200支,而每上漲1元就少賣(mài)10支,現(xiàn)在商店店主希望該筆月銷(xiāo)售利潤(rùn)達(dá)1350元,則每支鋼筆應(yīng)該上漲多少元錢(qián)?請(qǐng)你就該種鋼筆的漲價(jià)幅度和進(jìn)貨量,通過(guò)計(jì)算給店主提出一些合理建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在矩形OABC中,點(diǎn)A(0,10),C(8,0).沿直線(xiàn)CD折疊矩形OABC的一邊BC,使點(diǎn)B落在OA邊上的點(diǎn)E處.分別以O(shè)C, OA所在的直線(xiàn)為x軸,y軸建立平面直角坐標(biāo)系,拋物線(xiàn)經(jīng)過(guò)O,D,C三點(diǎn).

(1)求D的的坐標(biāo)及拋物線(xiàn)的解析式;
(2)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿EC以每秒2個(gè)單位長(zhǎng)的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CO以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),以P、Q、C為頂點(diǎn)的三角形與△ADE相似?
(3)點(diǎn)N在拋物線(xiàn)對(duì)稱(chēng)軸上,點(diǎn)M在拋物線(xiàn)上,是否存在這樣的點(diǎn)M與點(diǎn)N,使以M,N,C,E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M與點(diǎn)N的坐標(biāo)(不寫(xiě)求解過(guò)程);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷(xiāo)售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷(xiāo)售過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似的看做一次函數(shù):y=-10x+500.
(1)設(shè)李明每月獲得利潤(rùn)為w(元),當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?(6分)
(2)如果李明想要每月獲得2 000元的利潤(rùn),那么銷(xiāo)售單價(jià)應(yīng)定為多少元?(3分)
(3)物價(jià)部門(mén)規(guī)定,這種護(hù)眼臺(tái)燈的銷(xiāo)售單價(jià)不得高于32元,如果李明想要每月獲得的利潤(rùn)不低于2 000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷(xiāo)售量) (3分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知關(guān)于的一元二次方程有實(shí)數(shù)根,為正整數(shù).
(1)求的值;
(2)當(dāng)此方程有兩個(gè)非零的整數(shù)根時(shí),將關(guān)于的二次函數(shù)的圖象向下平移8個(gè)單位,求平移后的圖象的解析式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

甲車(chē)在彎路做剎車(chē)試驗(yàn),收集到的數(shù)據(jù)如下表所示:

速度(千米/時(shí))
0
5
10
15
20
25

剎車(chē)距離(米)
0

2

6


(1)請(qǐng)用上表中的各對(duì)數(shù)據(jù)作為點(diǎn)的坐標(biāo),在如圖所示的坐標(biāo)系中畫(huà)出剎車(chē)距離(米)與速度(千米/時(shí))的函數(shù)圖象,并求函數(shù)的解析式;

(2)在一個(gè)限速為40千米/時(shí)的彎路上,甲、乙兩車(chē)相向而行,同時(shí)剎車(chē),但還是相撞了.事后測(cè)得甲、乙兩車(chē)剎車(chē)距離分別為12米和10.5米,又知乙車(chē)剎車(chē)距離(米)與速度(千米/時(shí))滿(mǎn)足函數(shù),請(qǐng)你就兩車(chē)速度方面分析相撞原因.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線(xiàn)與直線(xiàn)交于點(diǎn)O(0,0),。點(diǎn)B是拋物線(xiàn)上O,A之間的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)B分別作x軸、y軸的平行線(xiàn)與直線(xiàn)OA交于點(diǎn)C,E。

(1)求拋物線(xiàn)的函數(shù)解析式;
(2)若點(diǎn)C為OA的中點(diǎn),求BC的長(zhǎng);
(3)以BC,BE為邊構(gòu)造條形BCDE,設(shè)點(diǎn)D的坐標(biāo)為(m,n),求m,n之間的關(guān)系式。

查看答案和解析>>

同步練習(xí)冊(cè)答案