【題目】隨著春節(jié)臨近,某兒童游樂場推出了甲、乙兩種消費卡,設(shè)消費次數(shù)為時,所需費用為元,且的函數(shù)關(guān)系如圖所示. 根據(jù)圖中信息,解答下列問題;

1)分別求出選擇這兩種卡消費時,關(guān)于的函數(shù)表達(dá)式.

2)求出點坐標(biāo).

3)洋洋爸爸準(zhǔn)備元錢用于洋洋在該游樂場消費,請問選擇哪種消費卡劃算?

【答案】1y=20xy=10x+100;(2)點B的坐標(biāo)為(10200);(3)選擇乙種消費卡劃算.

【解析】

1)運用待定系數(shù)法,即可求出yx之間的函數(shù)表達(dá)式;
2)聯(lián)立兩個函數(shù)解析式為方程組,求出方程組的解即可得出點B的坐標(biāo);

3)根據(jù)函數(shù)值等于240,分別求出兩種消費卡的消費次數(shù),即可得出結(jié)果.

解:(1)設(shè)y=k1x,根據(jù)題意得5k1=100,解得k1=20,∴y=20x
設(shè)y=k2x+100,根據(jù)題意得:20k2+100=300,解得k2=10,∴y=10x+100;
2)由題意得,

,解得.

故點B的坐標(biāo)為(10,200);

3)令y=20x=240,解得x=12;

y=10x+100=240,解得x=14

1214,

∴選擇乙種消費卡劃算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在南開中學(xué)校慶78周年之際,由學(xué)生處和美術(shù)教研組共同策劃、組織了“南開中學(xué)校園明信片設(shè)計大賽”。獲得此次設(shè)計大賽組織一等獎的、、、四個班級一共有75件作品獲獎,已知班參賽作品的獲獎率為30%,班參賽作品的獲獎率為40%。請結(jié)合兩幅統(tǒng)計圖所提供的信息,解決下列問題:

(1)四個班級一共選送了多少件作品參賽,獲獎率最高的班級是哪個班;

(2)請將條形統(tǒng)計圖補充完整;

(3)班的小欣和小怡同學(xué)在本次大賽中榮獲個人一等獎,此外、兩班各有一名同學(xué)榮獲個人一等獎。南開中學(xué)校友會準(zhǔn)備從這4名同學(xué)的作品中任選兩件,制作成新年賀卡送給老校友。請用列表法或畫樹狀圖的方法求出這兩件作品分別來自不同班級,且其中一件是小欣或小怡作品的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若兩個分式的和為為正整數(shù)),則稱這兩個分式互為階分式,例如分式互為“3階分式”.

1)分式 互為“5階分式

2)設(shè)正數(shù)互為倒數(shù),求證:分式互為“2階分式;

3)若分式互為“1階分式(其中為正數(shù)),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家電銷售商場電冰箱的銷售價為每臺1600元,空調(diào)的銷售價為每臺1400元,每臺電冰箱的進價比每臺空調(diào)的進價多300元,商場用9000元購進電冰箱的數(shù)量與用7200元購進空調(diào)數(shù)量相等.

(1)求每臺電冰箱與空調(diào)的進價分別是多少?

(2)現(xiàn)在商場準(zhǔn)備一次購進這兩種家電共100臺,設(shè)購進電冰箱x臺,這100臺家電的銷售利潤為Y元,要求購進空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于16200元,請分析合理的方案共有多少種?

(3)實際進貨時,廠家對電冰箱出廠價下調(diào)K(0K150)元,若商場保持這兩種家電的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計出使這100臺家電銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線BD經(jīng)過的坐標(biāo)原點,矩形的邊分別平行于坐標(biāo)軸,點C在反比例函數(shù)y=的圖象上,若點A的坐標(biāo)為(﹣2,﹣3),則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BC=6,AB=AC,E,F(xiàn)分別為AB,AC上的點(E,F(xiàn)不與A重合),且EF∥BC.將△AEF沿著直線EF向下翻折,得到△A′EF,再展開.

(1)請判斷四邊形AEA′F的形狀,并說明理由;

(2)當(dāng)四邊形AEA′F是正方形,且面積是△ABC的一半時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,拋物線C:y=ax2+bx+cx軸相交于A,B兩點,頂點為D(0,4),AB=4,設(shè)點F(m,0)x軸的正半軸上一點,將拋物線C繞點F旋轉(zhuǎn)180°,得到新的拋物線C/

(1)求拋物線C的函數(shù)表達(dá)式;

(2)若拋物線C/與拋物線Cy軸的右側(cè)有兩個不同的公共點,求m的取值范圍.

(3)如圖2,P是第一象限內(nèi)拋物線C上一點,它到兩坐標(biāo)軸的距離相等,點P在拋物線C/上的對應(yīng)點P/,設(shè)MC上的動點,NC/上的動點,試探究四邊形PMP/N能否成為正方形?若能,請直接寫出m的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調(diào)查,調(diào)查結(jié)果分為“A.非常了解”、“B.了解”、“C.基本了解”三個等級,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.

(1)這次調(diào)查的市民人數(shù)為________人,m=________,n=________;

(2)補全條形統(tǒng)計圖;

(3)若該市約有市民100000人,請你根據(jù)抽樣調(diào)查的結(jié)果,估計該市大約有多少人對“社會主義核心價值觀”達(dá)到“A.非常了解”的程度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,山坡AB的坡度i=1:,AB=10米,AE=15米.在高樓的頂端豎立一塊倒計時牌CD,在點B處測量計時牌的頂端C的仰角是45°,在點A處測量計時牌的底端D的仰角是60°,求這塊倒計時牌CD的高度.(測角器的高度忽略不計,結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

同步練習(xí)冊答案