(2012•北京二模)已知:如圖,P是線段AB的中點(diǎn),線段MN經(jīng)過點(diǎn)P,MA⊥AB,NB⊥AB.
求證:AM=BN.
分析:根據(jù)全等三角形的判定定理ASA證得△MAP≌△NBP,然后由全等三角形的對應(yīng)邊相等即可得到AM=BN.
解答:證明:∵P是線段AB的中點(diǎn),
∴AP=BP.
∵M(jìn)A⊥AB,NB⊥AB,
∴∠MAP=∠NBP=90°,
在△MAP和△NBP中,
∠MAP=∠NBP=90°
AP=BP
∠APM=∠BPN(對頂角相等)
,
∴△MAP≌△NBP(ASA),
∴AM=BN(全等三角形的對應(yīng)邊相等).
點(diǎn)評:本題考查了全等三角形的判定與性質(zhì).三角形全等的判定是中考的熱點(diǎn),一般以考查三角形全等的方法為主,判定兩個三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•北京二模)下列各式計算正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•北京二模)已知某三角形的邊長分別是3cm、4cm、5cm,則它的外接圓半徑是
2.5
2.5
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•北京二模)已知
m+3
+|n-2|=0
,則(m+n)2012=
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•北京二模)已知:在某個一次函數(shù)中,當(dāng)自變量x=2時,對應(yīng)的函數(shù)值是1;當(dāng)自變量x=-4時,對應(yīng)的函數(shù)值是10.求自變量x=2012時,該函數(shù)對應(yīng)的函數(shù)值是多少?

查看答案和解析>>

同步練習(xí)冊答案