四邊形ABCD中,對(duì)角線AC、BD的交點(diǎn)為O,
(1)如圖1,若AD∥BC,AD=6,BC=4,求數(shù)學(xué)公式的值;
(2)如圖2,若四邊形ABCD是矩形,過(guò)點(diǎn)B作BE⊥AC,垂足為E,當(dāng)∠ACB=30°時(shí),有數(shù)學(xué)公式,求BC的長(zhǎng)度.

解:(1)∵AD∥BC,
∴∠1=∠2,∠3=∠4,
∴△AOD∽△COB,
===;

(2)設(shè)BE=x,在Rt△BEC中,
∵∠ACB=30°,
∴BC=2BE=2x,
在Rt△ABC中,
∵cos∠ACB=,
∴cos30°==
∴AC===x,
又∵AC=BE+1=x+1,
x=x+1,解得x=,
∴BC=2x=2
分析:(1)先根據(jù)AD∥BC可知∠ACB=∠DAC,∠ADB=∠DBC,故可得出△AOD∽△COB,再根據(jù)相似三角形的對(duì)應(yīng)邊成比例即可得出結(jié)論;
(2)設(shè)BE=x,在Rt△BEC中,由∠ACB=30°可知BC=2BE=2x,在Rt△ABC中由cos∠ACB=,可用x表示出AC的值,再根據(jù)AC=BE+1可得出x的值,進(jìn)而得出結(jié)論.
點(diǎn)評(píng):本題考查的是相似三角形的判定與性質(zhì),熟知相似三角形的判定與性質(zhì)、銳角三角函數(shù)的定義及特殊角的三角函數(shù)值是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、如圖,平行四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,則圖中成中心對(duì)稱的三角形共有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

1、如圖,在四邊形ABCD中,AB∥CD,AD∥BC,AC,BD相交于O,則圖中能夠全等的三角形共有(  )對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、已知在四邊形ABCD中,∠A=∠C,∠B=∠D.求證:四邊形ABCD是平行四邊形.
請(qǐng)你思考下面的證法對(duì)嗎?如果不對(duì),錯(cuò)在何處并請(qǐng)給出另一種證明過(guò)程.
證明:如圖,連接BD,則∠1+∠3=180°-∠A,∠2+∠4=180°-∠C.
∵∠A=∠C,∴∠1+∠3=∠2+∠4.
∵∠B=∠D,∴∠1=∠4,∠2=∠3.
∴AB∥CD,AD∥BC.
∴四邊形ABCD是平行四邊形(兩組對(duì)邊分別平行的四邊形是平行四邊形).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,下列四個(gè)關(guān)系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°,選出其中的兩個(gè)關(guān)系作為命題的題設(shè),命題的結(jié)論:四邊形ABCD是平行四邊形,請(qǐng)寫(xiě)一個(gè)真命題和一個(gè)假命題.
你寫(xiě)的真命題是:已知:在四邊形ABCD中,
,

求證:四邊形ABCD是平行四邊形.
證明:
∵∠B+∠C=180°,
∴AB∥CD,
又∵AD∥BC,
∴四邊形ABCD是平行四邊形
∵∠B+∠C=180°,
∴AB∥CD,
又∵AD∥BC,
∴四邊形ABCD是平行四邊形

你寫(xiě)的假命題是:
題設(shè):
在四邊形ABCD中,AD∥BC,AB=CD
在四邊形ABCD中,AD∥BC,AB=CD
;
結(jié)論:四邊形ABCD是平行四邊形,你認(rèn)為它是假命題的理由是:
∵AD∥BC,AB=CD在四邊形ABCD中,是一組對(duì)邊平行,另一組對(duì)邊相等,
∴不能判定四邊形ABCD是平行四邊形
∵AD∥BC,AB=CD在四邊形ABCD中,是一組對(duì)邊平行,另一組對(duì)邊相等,
∴不能判定四邊形ABCD是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:047

如圖,在四邊形ABCD中,對(duì)邊ADBCP是對(duì)角線BD的中點(diǎn),MDC的中點(diǎn),NAB的中點(diǎn),△PMN是怎樣的三角形?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案