如果一個整數(shù)a的平方根分別是732x

(1)求這個ax的值;

(2)223a的立方根.

答案:
解析:

  解:(1)因為7a的的一個平方根,所以a7249

  因為49的平方根是±7,所以32x=-7,解得x5

  (2)223a223×-125,所以223a的立方根為=-5


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

24、如果一個正整數(shù)能表示為兩個連續(xù)偶數(shù)的平方差,那么稱這個正整數(shù)為“神秘數(shù)”.如:4=42-02,12=42-22,20=62-42,因此4,12,20都是“神秘數(shù)”
(1)28和2 012這兩個數(shù)是“神秘數(shù)”嗎?為什么?
(2)設(shè)兩個連續(xù)偶數(shù)為2k+2和2k(其中k取非負整數(shù)),由這兩個連續(xù)偶數(shù)構(gòu)造的神秘數(shù)是4的倍數(shù)嗎?為什么?
(3)兩個連續(xù)奇數(shù)的平方數(shù)(取正數(shù))是神秘數(shù)嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=x2+x+4.
(1)求此拋物線對稱軸與橫軸交點A的坐標;
(2)設(shè)原點為O,在拋物線上任取點P,求三角形OAP的面積的最小值;
(3)若x為整數(shù),在使得y為完全平方數(shù)的所有x的值中,設(shè)x的最大值為a,最小值為b,次小值為c.(注:一個數(shù)如果是另一個整數(shù)的完全平方,那么我們就稱這個數(shù)為完全平方數(shù).)求a、b、c的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、一位同學在研究中發(fā)現(xiàn):0×1×2×3+1=1=12;1×2×3×4+1=25=52;2×3×4×5+1=121=112;3×4×5×6+1=361=192;

由此他猜想到:任意四個連續(xù)自然數(shù)的積加上1,一定是一個正整數(shù)的平方,你認為他的猜想對嗎?請說出理由,如果不對,請舉一反例

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

相傳2500年前,古希臘著名數(shù)學家畢達哥拉斯從朋友家的地磚鋪成的地面上找到了直角三角形三邊的關(guān)系:“任意直角三角形,都有兩直角邊的平方和等于斜邊的平方.”這就是著名的“勾股定理”.它揭示了一個直角三角形三條邊之間的數(shù)量關(guān)系(如圖).
根據(jù)“勾股定理”,我們就可以由已知兩條直角邊的長來求斜邊的長.
如:a=1,b=1時,12+12=c2,c=
12+12
=
2
;a=1,b=2時,c=
12+22
=
5


請你根據(jù)上述材料,完成下列問題:
(1)a=1,b=3時,c=
10
10
;
(2)如果斜邊長為
13
,則直角邊為正整數(shù)
2
2
,
3
3

(3)請你在數(shù)軸上畫出表示
13
的點(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,并回答問題.
畫一個直角三角形,使它的兩條直角邊分別為5和12,那么我們可以量得直角三角形的斜邊長為13,并且52+122=132.事實上,在任何一個直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方.如果直角三角形中,兩直角邊長分別為a、b,斜邊長為c,則a2+b2=c2,這個結(jié)論就是著名的勾股定理.
請利用這個結(jié)論,完成下面的活動:
(1)一個直角三角形的兩條直角邊分別為6、8,那么這個直角三角形斜邊長為
10
10

(2)滿足勾股定理方程a2+b2=c2的正整數(shù)組(a,b,c)叫勾股數(shù)組.例如(3,4,5)就是一組勾股數(shù)組.觀察下列幾組勾股數(shù)
①3,4,5; ②5,12,13; ③7,24,25;④9,40,41;
請你寫出有以上規(guī)律的第⑤組勾股數(shù):
11,60,61
11,60,61

(3)如圖,AD⊥BC于D,AD=BD,AC=BE.AC=3,DC=1,求BD的長度.

(4)如圖,點A在數(shù)軸上表示的數(shù)是
-
5
-
5
,請用類似的方法在下圖數(shù)軸上畫出表示數(shù)
3
的B點(保留作圖痕跡).

查看答案和解析>>

同步練習冊答案