【題目】如圖,在平面直角坐標系中,點O為坐標系原點,矩形OABC的邊OA,OC分別在軸和軸上,其中OA=6,OC=3.已知反比例函數(shù)x0)的圖象經(jīng)過BC邊上的中點D,交AB于點E

1k的值為

2)猜想△OCD的面積與△OBE的面積之間的關系,請說明理由.

【答案】19;(2SOCD=SOBE,理由見解析.

【解析】

試題(1)根據(jù)題意得出點D的坐標,從而可得出k的值:

∵OA=6,OC=3,點DBC的中點,∴D3,3).

反比例函數(shù)x0)的圖象經(jīng)過點D,∴k=3×3=9

2)根據(jù)三角形的面積公式和點DE在函數(shù)的圖象上,可得出SOCD=SOAE,再由點DBC的中點,可得出SOCD=SOBD,即可得出結論.

試題解析:解:(19

2SOCD=SOBE,理由是:

D,E在函數(shù)的圖象上,∴SOCD=SOAE=,

DBC的中點,∴SOCD=SOBD,即SOBE=

∴SOCD=SOBE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,∠BAD+BCD=180°, AC平分∠BAD,過點CCEAD,垂足為E, CD=4,AE=10,則四邊形ABCD的周長是____________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形AOBC中,ACOB,頂點O是原點,頂點A的坐標為(0,8),AC24cm,OB26cm,點P從點A出發(fā),以1cm/s的速度向點C運動,點Q從點B同時出發(fā),以3m/s的速度向點O運動.規(guī)定其中一個動點到達端點時,另一個動點也隨之停止運動;從運動開始,設PQ)點運動的時間為ts

1)求直線BC的函數(shù)解析式;

2)當t為何值時,四邊形AOQP是矩形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AC=BC,ACB=90°,D為ABC內一點, BAD=15°,AD=AC,CEAD于E,且CE=5.

(1)求BC的長;

(2)求證:BD=CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,反比例函數(shù)y=(k≠0)經(jīng)過ABCD的頂點B、D,點A的坐標為(0,﹣1),ABx軸,CD經(jīng)過點(0,2),ABCD的面積是18,則點D的坐標是( 。

A. (﹣2,2) B. (3,2) C. (﹣3,2) D. (﹣6,1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=﹣x2+1的圖象與x軸交于A、B兩點,與y軸交于點C,下列說法錯誤的是( 。.

A. 點C的坐標是(0,1) B. 線段AB的長為2

C. △ABC是等腰直角三角形 D. 當x>0時,y隨x增大而增大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點(﹣2,y1),(﹣5,y2),(1,y3)在函數(shù)y=2x2+8x+7的圖象上,則y1,y2,y3的大小關系為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ADBEABC的角平分線,D,E分別在BC,AC上,若AD=AB,BE=BC,則∠C=( 。

A. 69° B. C. D. 不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(﹣2,2),B(﹣3,﹣2).

1)若點D與點A關于y軸對稱,則點D的坐標為   

2)將點B先向右平移5個單位再向上平移1個單位得到點C,則點C的坐標為   

3)在圖上作出點C,D,并順次連接成四邊形ABCD;

4)四邊形ABCD的面積為   

查看答案和解析>>

同步練習冊答案