在平面直角坐標(biāo)系xOy中,拋物線(xiàn)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,4),D為OC的中點(diǎn).
(1)求m的值;
(2)拋物線(xiàn)的對(duì)稱(chēng)軸與 x軸交于點(diǎn)E,在直線(xiàn)AD上是否存在點(diǎn)F,使得以點(diǎn)A、B、F為頂點(diǎn)的三角形與△ADE 相似?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)G,使△GBC中BC邊上的高為?若存在,求出點(diǎn)G的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.
(1)-1;(2)(1,4)或(,5);(3)(,)或(,).
解析試題分析:(1)由拋物線(xiàn)與y軸交于點(diǎn)C(0,4),把C點(diǎn)的坐標(biāo)代入解析式建立方程,求出方程的解,就可以求出m的值;
(2)先求出拋物線(xiàn)與x軸的交點(diǎn)坐標(biāo),根據(jù)拋物線(xiàn)的對(duì)稱(chēng)性求出E點(diǎn)的坐標(biāo),然后根據(jù)對(duì)應(yīng)角不同的情況就可以求出F的不同坐標(biāo);
(3)先由待定系數(shù)法求出直線(xiàn)BC的解析式,然后由題目的條件求出與直線(xiàn)BC平行且距離為 的直線(xiàn)的解析式,再由拋物線(xiàn)的對(duì)稱(chēng)軸與這些與BC平行的直線(xiàn)的解析式構(gòu)建方程組求出其解,就可以求出G的坐標(biāo).
試題解析:(1)拋物線(xiàn)與y軸交于點(diǎn)C(0,4),
∴5+m=4.∴m=-1.
(2)拋物線(xiàn)的解析式為 y=-x2+3x+4.
可求拋物線(xiàn)與x軸的交點(diǎn)A(-1,0),B(4,0).
可求點(diǎn)E的坐標(biāo)(,0).
由圖知,點(diǎn)F在x軸下方的直線(xiàn)AD上時(shí),△ABF是鈍角三角形,不可能與△ADE相似,所以點(diǎn)F一定在x軸上方.
此時(shí)△ABF與△ADE有一個(gè)公共角,兩個(gè)三角形相似存在兩種情況:
當(dāng)時(shí),由于E為AB的中點(diǎn),此時(shí)D為AF的中點(diǎn),可求 F點(diǎn)坐標(biāo)為(1,4).
②當(dāng)時(shí),,解得: .
如圖(2)過(guò)F點(diǎn)作FH⊥x軸,垂足為H.
∴.
∵D是OC的中點(diǎn),∴OD=2.
∴由勾股定理得:.
∴, 解得.
由勾股定理得:,
∴F的坐標(biāo)為(,5).
(3)在拋物線(xiàn)的對(duì)稱(chēng)軸上存在符合題意的點(diǎn)G.
由題意,可知△OBC為等腰直角三角形,直線(xiàn)BC為y=-x+4.
如圖(3),
∵M(jìn)Q∥BC,QP=,∴由勾股定理,得CQ=5.
∴可求與直線(xiàn)BC平行且距離為的直線(xiàn)為y=-x+9或y=-x-1.
∴點(diǎn)G在直線(xiàn)y=-x+9或y=-x-1上.
∵拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)x=,
∴或,解得:或.
∴點(diǎn)G的坐標(biāo)為(,)或(,).
考點(diǎn):1.二次函數(shù)綜合題;2.兩條直線(xiàn)相交或平行問(wèn)題;3.待定系數(shù)法求二次函數(shù)解析式;4.等腰直角三角形的性質(zhì);5.相似三角形的判定和性質(zhì);6.分類(lèi)思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知一個(gè)二次函數(shù)的頂點(diǎn)A的坐標(biāo)為(1,0),且圖像經(jīng)過(guò)點(diǎn)B(2,3).
(1)求這個(gè)二次函數(shù)的解析式.
(2)設(shè)圖像與y軸的交點(diǎn)為C,記,試用表示(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(4,0),B(2,2),連結(jié)OB,AB.
(1)求、的值;
(2)求證:△OAB是等腰直角三角形;
(3)將△OAB繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)l35°得到△OA′B′,寫(xiě)出A′B′的中點(diǎn)P的出標(biāo).試判斷點(diǎn)P是否在此拋物線(xiàn)上,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(4,﹣),且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).
(1)求拋物線(xiàn)的解析式及A,B兩點(diǎn)的坐標(biāo);
(2)在(1)中拋物線(xiàn)的對(duì)稱(chēng)軸l上是否存在一點(diǎn)P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,請(qǐng)說(shuō)明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
拋物線(xiàn)過(guò)點(diǎn)(2,-2)和(-1,10),與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).
(1)求拋物線(xiàn)的解析式.
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,某中學(xué)校園有一塊長(zhǎng)為35m,寬為16m的長(zhǎng)方形空地,其中有一面已經(jīng)鋪設(shè)長(zhǎng)為26m的籬笆圍墻,學(xué)校設(shè)計(jì)在這片空地上,利用這面圍墻和用盡已有的可制作50m長(zhǎng)的籬笆材料,圍成一個(gè)矩形花園或圍成一個(gè)半圓花園,請(qǐng)回答以下問(wèn)題:
(1)能否圍成面積為300m2的矩形花園?若能,請(qǐng)寫(xiě)出其中一種設(shè)計(jì)方案,若不能,請(qǐng)說(shuō)明理由.
(2)若圍成一個(gè)半圓花園,則該如何設(shè)計(jì)?請(qǐng)寫(xiě)出你的設(shè)計(jì)方案.(π取3.14)
(3)圍成的各種設(shè)計(jì)中,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)y=ax2+bx-3的圖象經(jīng)過(guò)點(diǎn)A(2,-3),B(-1,0). 求二次函數(shù)的解析式;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線(xiàn)與x軸交于點(diǎn)A(—2,0),交y軸于點(diǎn)B(0,).直過(guò)點(diǎn)A與y軸交于點(diǎn)C,與拋物線(xiàn)的另一個(gè)交點(diǎn)是D.
(1)求拋物線(xiàn)與直線(xiàn)的解析式;
(2)設(shè)點(diǎn)P是直線(xiàn)AD下方的拋物線(xiàn)上一動(dòng)點(diǎn)(不與點(diǎn)A、D重合),過(guò)點(diǎn)P作 y軸的平行線(xiàn),交直線(xiàn)AD于點(diǎn)M,作DE⊥y軸于點(diǎn)E.探究:是否存在這樣的點(diǎn)P,使四邊形PMEC是平行四邊形?若存在請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,作PN⊥AD于點(diǎn)N,設(shè)△PMN的周長(zhǎng)為m,點(diǎn)P的橫坐標(biāo)為x,求m與x的函數(shù)關(guān)系式,并求出m的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)().
(1)求拋物線(xiàn)與軸的交點(diǎn)坐標(biāo);
(2)若拋物線(xiàn)與軸的兩個(gè)交點(diǎn)之間的距離為2,求的值;
(3)若一次函數(shù)的圖象與拋物線(xiàn)始終只有一個(gè)公共點(diǎn),求一次函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com