【題目】古代阿拉伯?dāng)?shù)學(xué)家泰比特·伊本·奎拉對勾股定理進(jìn)行了推廣研究如圖(圖1為銳角2為直角,3為鈍角)

ABC的邊BC上取 兩點使,, , ,進(jìn)而可得 ;(用表示

AB=4AC=3,BC=6,

【答案】BCBC, ,

【解析】試題分析:

1)由△ABC∽△B′BA∽△C′AC,可得, ,由此可得;AB2=B′B·BC,AC2=C′C·BC,由此可得AB2+AC2= B′B·BC+ C′C·BC=BC·(B′B+ C′C);

2)把AB=4,AC=3BC=6,代入(1)中所得AB2+AC2= BC·(B′B+ C′C)可解得;B′B+ C′C=結(jié)合B′B+ C′C=BC+B′C′即可解得B′C′=.

試題分析:

(1)∵△ABC∽△B′BA∽△C′AC,

, ,

∴ AB2=B′B·BCAC2=C′C·BC,

AB2+AC2= B′B·BC+ C′C·BC=BC·(B′B+ C′C)AB2+AC2= BC·(B′B+ C′C);

故本題答案依次為BC,BC,BC·(B′B+ C′C)

2)由(1)可知AB2+AC2= BC·(B′B+ C′C),

∵AB=4,AC=3BC=6,

∴16+9=6(B′B+ C′C),

B′B+ C′C=,

B′B+ C′C=BC-B′C′,

B′C′=.

即本題答案為 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校計劃購買若干臺電腦,現(xiàn)從兩家商場了解到同一型號電腦每臺報價均為4000元,并且多買都有一定的優(yōu)惠.甲商場的優(yōu)惠條件是:第一臺按原價收費(fèi),其余每臺優(yōu)惠25%;乙商場的優(yōu)惠條件是:每臺優(yōu)惠20%

1)設(shè)該學(xué)校所買的電腦臺數(shù)是x臺,選擇甲商場時,所需費(fèi)用為元,選擇乙商場時,所需費(fèi)用為元,請分別寫出 x之間的關(guān)系式;

2)該學(xué)校如何根據(jù)所買電腦的臺數(shù)選擇到哪間商場購買,所需費(fèi)用較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小莉的爸爸買了某演唱會的一張門票,她和哥哥兩人都想去觀看,可門票只有一張,讀九年級的哥哥想了一個辦法,拿了八張撲克牌,將數(shù)字 1,2,3,5 的四張牌給小莉,將數(shù)字為 4,6,7,8 的四張牌留給自己,并按如下游戲規(guī)則進(jìn)行:小莉和哥哥從各自的四張牌中隨機(jī)抽出一張,然后 將抽出的兩張牌數(shù)字相加,如果和為偶數(shù),則小莉去,如果和為奇數(shù),則哥哥去。

(1)請用樹狀圖或列表的方法表示出兩張牌數(shù)字相加和的所有可能出現(xiàn)的結(jié)果;

(2)哥哥設(shè)計的游戲規(guī)則公平么?請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy(如圖)中,已知拋物線y=+bx+c點經(jīng)過A1,0)、B02).

1)求該拋物線的表達(dá)式;

2)設(shè)該拋物線的對稱軸與x軸的交點為C,第四象限內(nèi)的點D在該拋物線的對稱軸上,如果以點A、C、D所組成的三角形與AOB相似,求點D的坐標(biāo);

3)設(shè)點E在該拋物線的對稱軸上,它的縱坐標(biāo)是1,聯(lián)結(jié)AE、BE,求sinABE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系xOy中,函數(shù)y1(x0)的圖象與一次函數(shù)y2kxk的圖象的交點為A(m,2)

(1)求一次函數(shù)的解析式;

(2)設(shè)一次函數(shù)ykxk的圖象與y軸交于點B,若點Px軸上一點,且滿足PAB的面積是6,請寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點E,射線EG在∠AEC內(nèi)(如圖1).

1)若∠BEC的補(bǔ)角是它的余角的3倍,則∠BEC   °

2)在(1)的條件下,若∠CEG比∠AEG25度,求∠AEG的大。

3)若射線EF平分∠AED,∠FEGm°m90°)(如圖2),則∠AEG﹣∠CEG   °(用m的代表式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中, °,點D是線段BC上的動點,將線段AD繞點A順時針旋轉(zhuǎn)50°,連接.已知AB2cm,設(shè)BDx cm,By cm

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究,下面是小明的探究過程,請補(bǔ)充完整.(說明:解答中所填數(shù)值均保留一位小數(shù))

1通過取點、畫圖、測量,得到了的幾組值,如下表:

0.5

0.7

1.0

1.5

2.0

2.3

1.7

1.3

1.1

0.7

0.9

1.1

2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象.

3)結(jié)合畫出的函數(shù)圖象,解決問題:

線段的長度的最小值約為__________ ;

,則的長度x的取值范圍是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點A(﹣3,0)、B(0,4),對△OAB連續(xù)作翻轉(zhuǎn)變換,依次得到△1、△2、△3、△4…,則△23中的的坐標(biāo)為_______________。

查看答案和解析>>

同步練習(xí)冊答案