(2002•廣州)如圖,⊙O的弦AB、CD的延長線相交于點E.請你根據(jù)上述條件,寫出一個正確的結論(所寫的結論不能自行再添加新的線段及標注其他字母),并給出證明.(證明時允許自行添加輔助線)

【答案】分析:已知中的EA,EC是圓的兩條割線,因而可以滿足割線定理,連接AD,BC就可以得到相似三角形,就可以寫出求證的結論.
解答:可以證明的結論是EA•EB=EC•ED.
證明:連接AD,BC,
∵∠A=∠C,∠E=∠E,
∴△AED∽△CEB.
=
即EA•EB=EC•ED.
點評:本題利用了同弧所對的圓周角相等,相似三角形的對應邊的比相等.把證明線段的積相等的問題可以轉化為證明三角形相似的問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2002•廣州)如圖,在△ABC中,∠B=90°,AB=4,BC=3,O是AB的中點,OP⊥AB交AC于點P.
(1)證明線段AO、OB、OP中,任意兩條線段長度之和大于第三條線段的長度;
(2)過線段OB(包括端點)上任一點M,作MN⊥AB交AC于點N.如果要使線段AM、MB、MN中任意兩條線段長度之和大于第三條線段的長度,那么請求出線段AM的長度的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圓》(04)(解析版) 題型:選擇題

(2002•廣州)如圖,若四邊形ABCD是半徑為1的⊙O的內接正方形,則圖中四個弓形(即四個陰影部分)的面積和為( )

A.(2π-2)cm2
B.(2π-1)cm2
C.(π-2)cm2
D.(π-1)cm2

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《三角形》(05)(解析版) 題型:填空題

(2002•廣州)如圖所示,在正方形ABCD中,AO⊥BD,OE,F(xiàn)G,HI都垂直于AD,EF,GH,IJ都垂直于AO,若已知S△AIJ=1,則正方形ABCD的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源:2002年廣東省廣州市中考數(shù)學試卷(解析版) 題型:填空題

(2002•廣州)如圖所示,在正方形ABCD中,AO⊥BD,OE,F(xiàn)G,HI都垂直于AD,EF,GH,IJ都垂直于AO,若已知S△AIJ=1,則正方形ABCD的面積為   

查看答案和解析>>

同步練習冊答案