【題目】如圖,拋物線y=﹣x2﹣2x+3的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)點(diǎn)M(m,0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過(guò)點(diǎn)Q作QN⊥x軸于點(diǎn)N,可得矩形PQNM.如圖,點(diǎn)P在點(diǎn)Q左邊,試用含m的式子表示矩形PQNM的周長(zhǎng);
(3)當(dāng)矩形PQNM的周長(zhǎng)最大時(shí),m的值是多少?并求出此時(shí)的△AEM的面積;
(4)在(3)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ,過(guò)拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=2DQ,求點(diǎn)F的坐標(biāo).
【答案】(1)A(﹣3,0),B(1,0);C(0,3) ;(2)矩形PMNQ的周長(zhǎng)=﹣2m2﹣8m+2;(3) m=﹣2;S=;(4)F(﹣4,﹣5)或(1,0).
【解析】
(1)利用函數(shù)圖象與坐標(biāo)軸的交點(diǎn)的求法,求出點(diǎn)A,B,C的坐標(biāo);
(2)先確定出拋物線對(duì)稱(chēng)軸,用m表示出PM,MN即可;
(3)由(2)得到的結(jié)論判斷出矩形周長(zhǎng)最大時(shí),確定出m,進(jìn)而求出直線AC解析式,即可;
(4)在(3)的基礎(chǔ)上,判斷出N應(yīng)與原點(diǎn)重合,Q點(diǎn)與C點(diǎn)重合,求出DQ=DC=,再建立方程(n+3)﹣(﹣n2﹣2n+3)=4即可.
(1)由拋物線y=﹣x2﹣2x+3可知,C(0,3).
令y=0,則0=﹣x2﹣2x+3,
解得,x=﹣3或x=l,
∴A(﹣3,0),B(1,0).
(2)由拋物線y=﹣x2﹣2x+3可知,對(duì)稱(chēng)軸為x=﹣1.
∵M(m,0),
∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,
∴矩形PMNQ的周長(zhǎng)=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.
(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,
∴矩形的周長(zhǎng)最大時(shí),m=﹣2.
∵A(﹣3,0),C(0,3),
設(shè)直線AC的解析式y=kx+b,
∴
解得k=l,b=3,
∴解析式y=x+3,
令x=﹣2,則y=1,
∴E(﹣2,1),
∴EM=1,AM=1,
∴S=AM×EM=.
(4)∵M(﹣2,0),拋物線的對(duì)稱(chēng)軸為x=﹣l,
∴N應(yīng)與原點(diǎn)重合,Q點(diǎn)與C點(diǎn)重合,
∴DQ=DC,
把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,
∴D(﹣1,4),
∴DQ=DC=.
∵FG=2DQ,
∴FG=4.
設(shè)F(n,﹣n2﹣2n+3),則G(n,n+3),
∵點(diǎn)G在點(diǎn)F的上方且FG=4,
∴(n+3)﹣(﹣n2﹣2n+3)=4.
解得n=﹣4或n=1,
∴F(﹣4,﹣5)或(1,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點(diǎn)E,F分別是線段BC,AC的中點(diǎn),連結(jié)EF.
(1)線段BE與AF的位置關(guān)系是 ,= .
(2)如圖2,當(dāng)△CEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a時(shí)(0°<a<180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
(3)如圖3,當(dāng)△CEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a時(shí)(0°<a<180°),延長(zhǎng)FC交AB于點(diǎn)D,如果AD=6﹣2,求旋轉(zhuǎn)角a的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為使高一新生入校后及時(shí)穿上合身的校服,現(xiàn)提前對(duì)某校九年級(jí)三班學(xué)生即將所穿校服型號(hào)情況進(jìn)行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個(gè)不完整的統(tǒng)計(jì)圖(校服型號(hào)以身高作為標(biāo)準(zhǔn),共分為6個(gè)型號(hào)):
根據(jù)以上信息,解答下列問(wèn)題:
(1)該班共有 名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該班學(xué)生所穿校服型號(hào)的眾數(shù)為 ,中位數(shù)為 ;
(4)如果該校預(yù)計(jì)招收新生1500名,根據(jù)樣本數(shù)據(jù),估計(jì)新生穿170型校服的學(xué)生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的網(wǎng)格中中每個(gè)小正方形的邊長(zhǎng)均為,線段的兩個(gè)端點(diǎn)均在格點(diǎn)上;
(1)畫(huà)出以為一條直角邊的,點(diǎn)在格點(diǎn)上,且的面積為;
(2)在圖中畫(huà)出以為斜邊的,點(diǎn)在格點(diǎn)上,且的面積為,并請(qǐng)直接寫(xiě)出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直徑為13的⊙E,經(jīng)過(guò)原點(diǎn)O,并且與x軸、y軸分別交于A、B兩點(diǎn),線段OA、OB(OA>OB)的長(zhǎng)分別是方程x2+kx+60=0的兩根.
(1)OA:OB=____;
(2)若點(diǎn)C在劣弧OA上,連結(jié)BC交OA于D,當(dāng)△BOC∽△BDA時(shí),點(diǎn)D的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在三角形中,把一邊的中點(diǎn)到這條邊的高線的距離叫做這條邊的中垂距.
例:如圖①,在△ABC中,D為邊BC的中點(diǎn),AE⊥BC于E,則線段DE的長(zhǎng)叫做邊BC的中垂距.
(1)設(shè)三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是________,推斷的數(shù)學(xué)依據(jù)是________.
(2)如圖②,在△ABC中,∠B=45°,AB=,BC=8,AD為邊BC的中線,求邊BC的中垂距.
(3)如圖③,在矩形ABCD中,AB=6,AD=4.點(diǎn)E為邊CD的中點(diǎn),連結(jié)AE并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F,連結(jié)AC.求△ACF中邊AF的中垂距.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c交x軸于A、B兩點(diǎn)(A在B的左側(cè)),且OA=3,OB=1,與y軸交于C(0,3),拋物線的頂點(diǎn)坐標(biāo)為D(﹣1,4).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求拋物線的解析式;
(3)過(guò)點(diǎn)D作直線DE∥y軸,交x軸于點(diǎn)E,點(diǎn)P是拋物線上B、D兩點(diǎn)間的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與B、D兩點(diǎn)重合),PA、PB與直線DE分別交于點(diǎn)F、G,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),EF+EG是否為定值?若是,試求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,.點(diǎn)從點(diǎn) 出發(fā),沿著運(yùn)動(dòng),速度為個(gè)單位/,在點(diǎn)運(yùn)動(dòng)的過(guò)程中,以為圓心的圓始終與斜邊相切,設(shè)⊙的面積為,點(diǎn)的運(yùn)動(dòng)時(shí)間為()().
(1)當(dāng)時(shí), ;(用含的式子表示)
(2)求與的函數(shù)表達(dá)式;
(3)在⊙P運(yùn)動(dòng)過(guò)程中,當(dāng)⊙P與三角形ABC的另一邊也相切時(shí),直接寫(xiě)出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測(cè)得A,C之間的距離為12cm,點(diǎn)B,D之間的距離為16m,則線段AB的長(zhǎng)為
A. B. 10cmC. 20cmD. 12cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com