【題目】已知ABC

1)如圖(1),∠C>B,若 ADBC 于點 D,AE 平分∠BAC,你能找出∠EAD 與∠B,∠C 之間的數(shù)量關系嗎?并說明理由.

2)如圖(2),AE 平分∠BAC,F AE 上一點,FMBC 于點 M,∠EFM 與∠B,∠C之間有何數(shù)量關系?并說明理由.

【答案】1)∠EAD= (C-B);理由見解析;(2)∠EFM= (C-∠B) ;理由見解析.

【解析】

1)分析題意,觀察圖形可知∠EAD=EAC-DAC,即若用∠B、∠C分別表示出∠EAC、∠DAC即可;首先根據(jù)三角形內(nèi)角和定理及角平分線的定義即可用∠B、∠C表示出∠EAV,再根據(jù)直角三角形兩銳角互余可得∠DAC=90°-C,據(jù)此可解答;

對于(2)過點AADBCD,根據(jù)兩直線平行,同位角相等可得∠EFM=EAD,再結合(1)的結論進行解答即可

解:(1)∵AE 平分∠BAC,

∴∠EAC=BAC= (180-∠B-∠C),

又∵ADBC

∴∠DAC=90-∠C,

∴∠EAD=EAC-∠DAC= (180-∠B-∠C)(90-∠C)= (C-∠B),

即∠EAD= (C-B);·

2)如圖,過點 A ADBC D,

FMBC,

ADFM

∴∠EFM=EAD= (C-∠B)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知點關于x軸的對稱點和點關于y軸的對稱點相同,則點關于x軸對稱的點的坐標為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖E、F在線段BDAB=CD,∠B=∠D,BF=DE

求證:(1)AE=CF;(2)AFCE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某數(shù)學興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某同學報名參加學校秋季運動會,有以下 5 個項目可供選擇:徑賽項目:100m、200m、1000m(分別用 A1、A2、A3 表示);田賽項目:跳遠,跳高(分別用 T1、T2 表示).

(1)該同學從 5 個項目中任選一個,恰好是田賽項目的概率 P

(2)該同學從 5 個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率 P1,利用列表法或樹狀圖加以說明;

(3)該同學從 5 個項目中任選兩個,則兩個項目都是徑賽項目的概率 P2 為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下關于x的各個多項式中,a,b,c,m,n均為常數(shù).

(1)根據(jù)計算結果填寫下表:

二次項系數(shù)

一次項系數(shù)

常數(shù)項

(2x + l)(x + 2)

2

2

(2x + 1)(3x - 2)

6

-2

(ax + b)( mx + n)

am

bn

(2)已知(x+ 3)2(x + mx +n)既不含二次項,也不含一次項,求m + n的值.

(3) 多項式M與多項式x2-3x + 1的乘積為2x4+ ax3 + bx2+ cx -3,2 a +b + c的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3分)在同一平面直角坐標系中,函數(shù)y=ax2+bxy=bx+a的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC=6,BAC=90°,點D、EBC邊上的兩點,分別沿AD、AE折疊,B、C兩點重合于點F,若DE=5,則AD的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別是(0,4),(1,0),將此平行四邊形繞點O順時針旋轉90°,得到平行四邊形ABOC′.

(1)若拋物線經(jīng)過點CA、A,求此拋物線的解析式;

(2)點M是第一象限內(nèi)拋物線上的一動點,問點M在何處時,AMA的面積最大?最大面積是多少?并求出此時點M的坐標.

查看答案和解析>>

同步練習冊答案