【題目】如圖,已知A,B(-1,2)是一次函數(shù)與反比例函數(shù)
()圖象的兩個(gè)交點(diǎn),AC⊥x軸于C,BD⊥y軸于D.
(1)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)大于反比例函數(shù)的值?
(2)求一次函數(shù)解析式及m的值;
(3)P是線段AB上的一點(diǎn),連接PC,PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).
【答案】(1)當(dāng)﹣4<x<﹣1時(shí),一次函數(shù)大于反比例函數(shù)的值;
(2)一次函數(shù)的解析式為y=x+;m=﹣2;
(3)P點(diǎn)坐標(biāo)是(﹣,).
【解析】
試題(1)根據(jù)一次函數(shù)圖象在反比例函數(shù)圖象上方的部分是不等式的解,觀察圖象,可得答案;
(2)根據(jù)待定系數(shù)法,可得函數(shù)解析式以及m的值;
(3)設(shè)P的坐標(biāo)為(x,x+)如圖,由A、B的坐標(biāo)可知AC=,OC=4,BD=1,OD=2,易知△PCA的高為x+4,△PDB的高(2﹣x﹣),由△PCA和△PDB面積相等得,可得答案.
試題解析:(1)由圖象得一次函數(shù)圖象在反比例函數(shù)圖象上方時(shí),﹣4<x<﹣1,
所以當(dāng)﹣4<x<﹣1時(shí),一次函數(shù)大于反比例函數(shù)的值;
(2)設(shè)一次函數(shù)的解析式為y=kx+b,
y=kx+b的圖象過(guò)點(diǎn)(﹣4,),(﹣1,2),則
,
解得
一次函數(shù)的解析式為y=x+,
反比例函數(shù)y=圖象過(guò)點(diǎn)(﹣1,2),
m=﹣1×2=﹣2;
(3)連接PC、PD,如圖,設(shè)P的坐標(biāo)為(x,x+)如圖,由A、B的坐標(biāo)可知AC=,OC=4,BD=1,OD=2,易知△PCA的高為x+4,△PDB的高(2﹣x﹣),由△PCA和△PDB面積相等得
××(x+4)=×|﹣1|×(2﹣x﹣),
x=﹣,y=x+=,
∴P點(diǎn)坐標(biāo)是(﹣,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的曲線是函數(shù)y= (m為常數(shù))圖象的一支.
(1)求常數(shù)m的取值范圍;
(2)若該函數(shù)的圖象與正比例函數(shù)y=2x的圖象在第一象限的交點(diǎn)為A(2,n),求點(diǎn)A的坐標(biāo)及反比例
函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線經(jīng)過(guò)點(diǎn)和,分別與x軸、y軸交于A、B兩點(diǎn).
(1)求直線的解析式:
(2)若把橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為格點(diǎn),則圖中陰影部分(不包括邊界)所含格點(diǎn)的個(gè)數(shù)有 個(gè);
(3)作出點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),則點(diǎn)的坐標(biāo)為 ;
(4)若在直線和軸上分別存在一點(diǎn)使的周長(zhǎng)最短,請(qǐng)?jiān)趫D中標(biāo)出點(diǎn)(不寫作法,保留痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖 1 是小紅在“淘寶雙 11”活動(dòng)中所購(gòu)買的一張多檔位可調(diào)節(jié)靠椅,檔位調(diào)節(jié)示意圖如圖 2 所示。已知兩支腳 AB=AC,O 為 AC 上固定連接點(diǎn),靠背 OD=10 分米。檔位為Ⅰ檔時(shí),OD∥AB,檔位為Ⅱ擋時(shí),OD’⊥AC,過(guò)點(diǎn)O作OG∥BC,則∠DOG+∠D’OG=_________°當(dāng)靠椅由Ⅰ檔調(diào)節(jié)為Ⅱ檔時(shí),靠背頂端 D 向后靠至 D’,此時(shí)點(diǎn) D 移動(dòng)的水平距離是 2 分米,即 ED’=2 分米。DH⊥OG于點(diǎn)H,則D到直線OG的距離為_________ 分米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,足球場(chǎng)上守門員在O處開(kāi)出一高球,球從離地面1m的A處飛出(A在y軸上),運(yùn)動(dòng)員乙在距O點(diǎn)6m的B處發(fā)現(xiàn)球在自己頭的正上方達(dá)到最高點(diǎn)M,距地面約4m高.球第一次落地后又彈起.據(jù)試驗(yàn),足球在草坪上彈起后的拋物線與原來(lái)的拋物線形狀相同,最大高度減少到原來(lái)最大高度的一半.
(1)求足球開(kāi)始飛出到第一次落地時(shí),該拋物線的表達(dá)式;
(2)運(yùn)動(dòng)員乙要搶到第二個(gè)落點(diǎn)D,他應(yīng)再向前跑多少米?(取, )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中, 對(duì)角線AC、BD相交于點(diǎn)O. E、F是對(duì)角線AC上的兩個(gè)不同點(diǎn),當(dāng)E、F兩點(diǎn)滿足下列條件時(shí),四邊形DEBF不一定是平行四邊形( ).
A.AE=CFB.DE=BFC.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了改進(jìn)銀行的服務(wù)質(zhì)量,隨機(jī)抽隨機(jī)抽查了名顧客,統(tǒng)計(jì)了顧客在窗口辦理業(yè)務(wù)所用的時(shí)間(單位:分鐘)下圖是這次調(diào)查得到的統(tǒng)計(jì)圖。
請(qǐng)你根據(jù)圖中的信息回答下列問(wèn)題:
(1)求辦理業(yè)務(wù)所用的時(shí)間為分鐘的人教;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求這名顧客辦理業(yè)務(wù)所用時(shí)間的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為打造書香校園,計(jì)劃購(gòu)進(jìn)甲、乙兩種規(guī)格的書柜放置新購(gòu)進(jìn)的圖書,調(diào)查發(fā)現(xiàn),若購(gòu)買甲種書柜個(gè)、乙種書柜個(gè),共需資金元;若購(gòu)買甲種書柜個(gè),乙種書柜個(gè),共需資金元
(1)甲、乙兩種書柜每個(gè)的價(jià)格分別是多少元?
(2)若該校計(jì)劃購(gòu)進(jìn)這兩種規(guī)格的書柜共個(gè),學(xué)校至多能夠提供資金元,請(qǐng)?jiān)O(shè)計(jì)幾種購(gòu)買方案供這個(gè)學(xué)校選擇.(兩種規(guī)格的書柜都必須購(gòu)買)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】西南大學(xué)附中初2020級(jí)小李同學(xué)想利用學(xué)過(guò)的知識(shí)測(cè)量棵樹(shù)的高度,假設(shè)樹(shù)是豎直生長(zhǎng)的,用圖中線段AB表示,小李站在C點(diǎn)測(cè)得∠BCA=45°,小李從C點(diǎn)走4米到達(dá)了斜坡DE的底端D點(diǎn),并測(cè)得∠CDE=150°,從D點(diǎn)上斜坡走了8米到達(dá)E點(diǎn),測(cè)得∠AED=60°,B,C,D在同一水平線上,A、B、C、D、E在同一平面內(nèi),則大樹(shù)AB的高度約為( 。┟祝ńY(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73)
A.24.3B.24.4C.20.3D.20.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com