【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)60°后得到△AB'C',若AB=4,則線段BC在上述旋轉(zhuǎn)過程中所掃過部分(陰影部分)的面積是( )
A.
π
B.
π
C.2π
D.4π
【答案】C
【解析】解:扇形BAB′的面積是: = , 在直角△ABC中,BC=ABsin60°=4× =2 ,AC= AB=2,S△ABC=S△AB′C′= ACBC= ×2 ×2=2 .扇形CAC′的面積是: = ,則陰影部分的面積是:扇形BAB′的面積+S△AB′C′﹣S△ABC﹣扇形CAC′的面積= ﹣ =2π.
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解扇形面積計(jì)算公式的相關(guān)知識(shí),掌握在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2),以及對(duì)旋轉(zhuǎn)的性質(zhì)的理解,了解①旋轉(zhuǎn)后對(duì)應(yīng)的線段長(zhǎng)短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一邊長(zhǎng)為的正方形紙板的四個(gè)角各剪去一個(gè)邊長(zhǎng)為的小正方形,然后把它折成一個(gè)無蓋紙盒.
求該紙盒的體積;
求該紙盒的全面積(外表面積);
為了使紙盒底面更加牢固且達(dá)到廢物利用的目的,現(xiàn)考慮將剪下的四個(gè)小正方形平鋪在盒子的底面,要求既不重疊又恰好鋪滿(不考慮紙板的厚度),求此時(shí)與之間的倍數(shù)關(guān)系.(直接寫出答案即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是對(duì)角線BD上一點(diǎn),且滿足BE=BC.連接CE并延長(zhǎng)交AD于點(diǎn)F,連接AE,過B點(diǎn)作BG⊥AE于點(diǎn)G,延長(zhǎng)BG交AD于點(diǎn)H.在下列結(jié)論中:
①AH=DF;②∠AEF=45°;③S四邊形EFHG=S△DEF+S△AGH;④△AEF≌△CDE
其中正確的結(jié)論有______ (填正確的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,的內(nèi)角的平分線與外角的平分線相交于點(diǎn),,求的度數(shù).
(2)如圖,四邊形中,設(shè),,為四邊形的內(nèi)角與外角 的平分線所在直線相交而形成的銳角.
①如圖②,若,求的度數(shù).(用、的代數(shù)式表示)
②如圖③,若,請(qǐng)?jiān)趫D③中畫出,并求得 .(用、的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)組織學(xué)生到離學(xué)校15千米的興化生態(tài)園進(jìn)行春季社會(huì)實(shí)踐活動(dòng),先遣隊(duì)與大隊(duì)同時(shí)出發(fā),先遣隊(duì)的速度是大隊(duì)速度的1.2倍,結(jié)果先遣隊(duì)比大隊(duì)早到30分鐘,求先遣隊(duì)的速度和大隊(duì)速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)的學(xué)習(xí)過程中,我們要善于觀察、發(fā)現(xiàn)規(guī)律并總結(jié)、應(yīng)用.下面給同學(xué)們展示了四種有理數(shù)的簡(jiǎn)便運(yùn)算的方法:
方法①:(﹣)2×162=[(﹣)×16]2=(﹣8)2=64,23×53=(2×5)3=103=1000
規(guī)律:a2b2=(ab)2,anbn=(ab)n (n為正整數(shù))
方法②:3.14×23+3.14×17+3.14×60=3.14×(23+17+60)=3.14×100=314
規(guī)律:ma+mb+mc=m(a+b+c)
方法③:(﹣12)÷3=[(﹣12)+(﹣)]×=(﹣12)×+(﹣)×=(﹣4)+(﹣)=﹣4
方法④:=1﹣, =﹣, =﹣, =﹣,…
規(guī)律: =﹣(n為正整數(shù))
利用以上方法,進(jìn)行簡(jiǎn)便運(yùn)算:
①(﹣0.125)2014×82014;
③(﹣20)÷(﹣5);
④+++…+.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,圖中的小方格都是邊長(zhǎng)為1的正方形,△ABC與△A′B′C′是以點(diǎn)O為位似中心的位似圖形,它們的頂點(diǎn)都在小正方形的頂點(diǎn)上.
(1)畫出位似中心點(diǎn)O;
(2)直接寫出△ABC與△A′B′C′的位似比;
(3)以位似中心O為坐標(biāo)原點(diǎn),以格線所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,畫出△A′B′C′關(guān)于點(diǎn)O中心對(duì)稱的△A″B″C″,并直接寫出△A″B″C″各頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜邊AC,交AB于D,E是垂足,連接CD.若BD=1,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,BC=AC=5,AB=8,CD為AB邊上的高,如圖1,A在原點(diǎn)處,點(diǎn)B在y軸正半軸上,點(diǎn)C在第一象限,若A從原點(diǎn)出發(fā),沿x軸向右以每秒1個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),則點(diǎn)B隨之沿y軸下滑,并帶動(dòng)△ABC在平面上滑動(dòng).如圖2,設(shè)運(yùn)動(dòng)時(shí)間表為t秒,當(dāng)B到達(dá)原點(diǎn)時(shí)停止運(yùn)動(dòng).
(1)當(dāng)t=0時(shí),求點(diǎn)C的坐標(biāo);
(2)當(dāng)t=4時(shí),求OD的長(zhǎng)及∠BAO的大;
(3)求從t=0到t=4這一時(shí)段點(diǎn)D運(yùn)動(dòng)路線的長(zhǎng);
(4)當(dāng)以點(diǎn)C為圓心,CA為半徑的圓與坐標(biāo)軸相切時(shí),求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com