【題目】若數(shù)軸上點(diǎn)A表示的數(shù)是1,則與點(diǎn)A距離為2的點(diǎn)所表示的數(shù)是 .
【答案】﹣1或3
【解析】解:(1)當(dāng)所求點(diǎn)在點(diǎn)A的左側(cè)時(shí),與點(diǎn)A距離為2的點(diǎn)所表示的數(shù)是:
1﹣2=﹣1.(2)當(dāng)所求點(diǎn)在點(diǎn)A的右側(cè)時(shí),與點(diǎn)A距離為2的點(diǎn)所表示的數(shù)是:
1+2=3.
與點(diǎn)A距離為2的點(diǎn)所表示的數(shù)是﹣1或3.
故答案為:﹣1或3.
根據(jù)題意,與點(diǎn)A距離為2的點(diǎn)有2個,分別位于點(diǎn)A的兩側(cè),據(jù)此求出與點(diǎn)A距離為2的點(diǎn)所表示的數(shù)是多少即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB,EF⊥AB,垂足分別為D、F,∠1=∠2,
(1)試判斷DG與BC的位置關(guān)系,并說明理由.
(2)若∠A=70°,∠BCG=40°,求∠AGD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 關(guān)系時(shí),仍有EF=BE+FD.
【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對稱軸為直線x=1.下列結(jié)論:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
④<a<
⑤b>c.
其中含所有正確結(jié)論的選項(xiàng)是( )
A.①③ B.①③④ C.②④⑤ D.①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖2).
(1)圖②中的陰影部分的面積為;
(2)觀察圖②請你寫出 (a+b)2 , (a﹣b)2 , ab之間的等量關(guān)系是;
(3)根據(jù)(2)中的結(jié)論,若x+y=4,xy= ,則(x﹣y)2=;
(4)實(shí)際上通過計(jì)算圖形的面積可以探求相應(yīng)的等式.如圖③,你發(fā)現(xiàn)的等式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①矩形是軸對稱圖形,兩條對角線所在的直線是它的對稱軸;②兩條對角線相等的四邊形是矩形;③有兩個角相等的平行四邊形是矩形;④兩條對角線相等且互相平分的四邊形是矩形;⑤兩條對角線互相垂直平分的四邊形是矩形.其中,正確的有 ( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于y的一元二次方程ky2﹣2y﹣1=0有兩個不相等的實(shí)數(shù)根,則k的取值范圍是( )
A. k>﹣1 B. k>﹣1且k≠0 C. k<1 D. k<1 且k≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由a-3<b+1,可得到結(jié)論( )
A. a<b B. a+3<b-1 C. a-1<b+3 D. a+1<b-3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com