【題目】有四張僅一面分別標有1,2,3,4的不透明紙片,除所標數字不同外,其余都完全相同.
(1)將四張紙片分成兩組,標有1、3的為第一組,標有2、4的為第二組,背面向上,放在桌上,從兩組中各隨機抽取一張,求兩次抽取數字和為5的概率;
(2)將四張紙片洗勻后背面向上,放在桌上,一次性從中隨機抽取兩張,用樹形圖法或列表法,求所抽取數字和為5的概率.
科目:初中數學 來源: 題型:
【題目】已知二次函數y=﹣x2+x+6及一次函數y=﹣x+m,將該二次函數在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(如圖所示),請你在圖中畫出這個新圖象,當直線y=﹣x+m與新圖象有4個交點時,m的取值范圍是( 。
A. ﹣<m<3 B. ﹣<m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD,AD=1,CD=2,點P為邊CD上的動點(P不與C重合),作點P關于BC的對稱點Q,連結AP,BP和BQ,現(xiàn)有兩個結論:①若DP≥1,當△APB為等腰三角形時,△APB和△PBQ一定相似;②記經過P,Q,A三點的圓面積為S,則4π≤S<.
下列說法正確的是( )
A. ①對②對B. ①對②錯C. ①錯②對D. ①錯②錯
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于二次函數,有下列結論:①其圖象與x軸一定相交;②若,函數在時,y隨x的增大而減小;③無論a取何值,拋物線的頂點始終在同一條直線上;④無論a取何值,函數圖象都經過同一個點.其中所有正確的結論是___.(填寫正確結論的序號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCO的頂點B、C在第二象限,點A(﹣3,0),反比例函數y=(k<0)圖象經過點C和AB邊的中點D,若∠B=α,則k的值為( )
A. ﹣4tanαB. ﹣2sinαC. ﹣4cosαD. ﹣2tan
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點M.填空:
①的值為 ;
②∠AMB的度數為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點M.請判斷的值及∠AMB的度數,并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點O在平面內旋轉,AC,BD所在直線交于點M,若OD=1,OB=,請直接寫出當點C與點M重合時AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點B坐標為(4,6),點P為線段OA上一動點(與點O、A不重合),連接CP,過點P作PE⊥CP交AB于點D,且PE=PC,過點P作PF⊥OP且PF=PO(點F在第一象限),連結FD、BE、BF,設OP=t.
(1)直接寫出點E的坐標(用含t的代數式表示):_____;
(2)四邊形BFDE的面積記為S,當t為何值時,S有最小值,并求出最小值;
(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A(4,3)是反比例函數y=在第一象限圖象上一點,連接OA,過A作AB∥x軸,截取AB=OA(B在A右側),連接OB,交反比例函數y=的圖象于點P.
(1)求反比例函數y=的表達式;
(2)求點B的坐標;
(3)求△OAP的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察猜想:(1)如圖①,在Rt△ABC中,∠BAC=90°,AB=AC=3,點D與點A重合,點E在邊BC上,連接DE,將線段DE繞點D順時針旋轉90°得到線段DF,連接BF,BE與BF的位置關系是 ,BE+BF= ;
探究證明:(2)在(1)中,如果將點D沿AB方向移動,使AD=1,其余條件不變,如圖②,判斷BE與BF的位置關系,并求BE+BF的值,請寫出你的理由或計算過程;
拓展延伸:(3)如圖③,在△ABC中,AB=AC,∠BAC=a,點D在邊BA的延長線上,BD=n,連接DE,將線段DE繞著點D順時針旋轉,旋轉角∠EDF=a,連接BF,則BE+BF的值是多少?請用含有n,a的式子直接寫出結論.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com