如圖所示,在△ABC中,∠BAC=135°,EF、GH分別是AB、AC兩邊的垂直平分線,與BC邊交于點E、G,求∠EAG的度數(shù).
分析:由EF、GH分別是AB、AC兩邊的垂直平分線,根據(jù)線段垂直平分線的性質(zhì),即可求得AE=BE,AG=CG,然后由等邊對等角,可得∠BAE=∠B,∠CAG=∠C,由在△ABC中,∠BAC=135°,利用三角形內(nèi)角和定理,即可求得∠BAE+∠CAG=45°,繼而求得∠EAG的度數(shù).
解答:解:∵EF、GH分別是AB、AC兩邊的垂直平分線,
∴AE=BE,AG=CG,
∴∠BAE=∠B,∠CAG=∠C,
∵∠BAC=135°,
∴∠B+∠C=180°-∠BAC=45°,
∴∠BAE+∠CAG=45°,
∴∠EAG=∠BAC-(∠BAE+∠CAG)=135°-45°=90°.
點評:此題考查了線段垂直平分線的性質(zhì)、三角形內(nèi)角和定理以及等腰三角形的性質(zhì).此題難度不大,注意掌握垂直平分線上任意一點,到線段兩端點的距離相等定理的應(yīng)用,注意數(shù)形結(jié)合思想與整體思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點,E是線段BC延長線上一點,過點A作AF∥BC交ED的延長線于點F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長為18cm,△ABC的周長為30cm,那么BE的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點在BC上從B點向C點運動(不包括點C),點P的運動速度為2cm∕s;Q點在AC上從C點向點A運動(不包括點A),運動速度為5cm∕s,若點P、Q分別從B、C同時運動,請解答下面的問題,并寫出主要過程.
(1)經(jīng)過多長時間后,P、Q兩點的距離為5
2
cm?
(2)經(jīng)過多長時間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習(xí)冊答案