如圖,ABCD為長方形的臺球桌面,有白黑兩球分別位于E、F點.

問:怎樣撞擊白球E,使白球先碰撞臺邊BC,反彈后再撞擊臺邊DC,再反彈后擊中黑球F.作出BC和CD的被擊點的位置和白球的運動路線.(寫出作圖方法,保留作圖痕跡)

答案:略
解析:

如圖


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖:是一海堤的橫斷面為梯形ABCD,已知堤頂寬BC為6m,堤高為4m,為了提高海堤的攔水能力,需要將海堤加高2m,并且保持堤頂寬度不變,迎水坡CD的坡度也不變.但是背水坡的坡度由原來的i=1:2改成i=1:2.5(有關數(shù)據(jù)在圖上已注明)
(1)求加高后的堤底HD的長;
(2)求增加部分的橫斷面積;
(3)設大堤長為1000米,需多少方土加上去?
(4)若每方土付給民工300元,計劃付給民工多少資金?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:模擬題 題型:解答題

條 件:如下左圖,A、B是直線同旁的兩個定點.
問 題:在直線l上確定一點P,使PA+PB的值最。
方 法:作點A關于直線l的對稱點A',連結(jié)A'B交l于點P,則PA+PB=A'B的值最。ú槐刈C明).
模型應用: 
(1)如圖1,正方形ABCD的邊長為2,E為AB的中點,P是AC上一動點.連結(jié)BD,由正方形對稱性可知,B與D關于直線AC對稱.連結(jié)PE、PB,則PB+PE的最小值是(       );
(2)如圖2,的半徑為2,點A、B、C在上,,P是OB上一動點,求PA+PC的最小值;
(3)如圖3,∠AOB=30°,P是內(nèi)一點,PO=8,Q,R分別是OA、OB上的動點,求周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:同步題 題型:解答題

某工廠的大門如圖所示,其中四邊形ABCD是長方 形,上部是以AB為直徑的半圓,其中AD=2.3米,AB=2米,現(xiàn)有一輛裝滿貨物的卡車,高2.5米,寬1.6米,問這輛車能否通過廠門? 說明理由

查看答案和解析>>

科目:初中數(shù)學 來源:2011年3月江蘇省揚州市梅嶺中學九年級階段性回練數(shù)學試卷(解析版) 題型:解答題

如圖:是一海堤的橫斷面為梯形ABCD,已知堤頂寬BC為6m,堤高為4m,為了提高海堤的攔水能力,需要將海堤加高2m,并且保持堤頂寬度不變,迎水坡CD的坡度也不變.但是背水坡的坡度由原來的i=1:2改成i=1:2.5(有關數(shù)據(jù)在圖上已注明)
(1)求加高后的堤底HD的長;
(2)求增加部分的橫斷面積;
(3)設大堤長為1000米,需多少方土加上去?
(4)若每方土付給民工300元,計劃付給民工多少資金?

查看答案和解析>>

同步練習冊答案