如圖,⊙H與x軸交于A、B兩點,與y軸交于C、D兩點,圓心H的坐標(biāo)是(1,-1),半徑是
5

(1)求經(jīng)過點D的切線的解析式;
(2)問過點A的切線與過點D的切線是否垂直?若垂直,請寫出證明過程;若不垂直,請說明理由.
(1)設(shè)過點D的切線交x軸于點E,EA=x,
則DE2=EA•EB=x(x+4);
又在Rt△DOE中,DE2=EO2+DO2=(x+1)2+32,
∴(x+1)2+32=x(x+4);(6分)
解得x=5,即EA=5,
點E的坐標(biāo)為(-6,0);(7分)
設(shè)所求切線的解析式為y=kx+b,因為它經(jīng)過(0,-3)和(-6,0)兩點,
b=-3
-6k+b=0

解得
k=-
1
2
b=-3

∴所求解析式為y=-
1
2
x-3;(8分)

(2)過點A的切線與過點D的切線互相垂直,證明如下:(9分)
證明:設(shè)過點A的切線與DE相交于點M,與y軸相交于點N;
∵AB=CD=4,即有
AB
=
CD

∴∠NAO=∠MDO;(10分)
又∵∠NAO+∠ANO=90°,
∴∠MND+∠MDN=90°;
∴過點A的切線與過點D的切線互相垂直.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某早餐店每天的利潤y(元)與售出的早餐x(份)之間的函數(shù)關(guān)系如圖所示.當(dāng)每天售出的早餐超過150份時,需要增加一名工人.
(1)該店每天至少要售出______份早餐才不虧本;
(2)求出150<x≤300時,y關(guān)于x的函數(shù)解析式;
(3)要使每天有120元以上的盈利,至少要售出多少份早餐?
(4)該店每出售一份早餐,盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在平面直角坐標(biāo)系中,直角梯形ABCD,ABCD,AD=CD,∠ABC=90°,A、B在x軸上,點D在y軸上,若tan∠OAD=
4
3
,B點的坐標(biāo)為(5,0).
(1)求直線AC的解析式;
(2)若點Q、P分別從點C、A同時出發(fā),點Q沿線段CA向點A運(yùn)動,點P沿線段AB向點B運(yùn)動,Q點的速度為每秒
5
個單位長度,P點的速度為每秒2個單位長度,設(shè)運(yùn)動時間為t秒,△PQE的面積為S,求S與t的函數(shù)關(guān)系式(請直接寫出自變量t的取值范圍);
(3)在(2)的條件下,過P點作PQ的垂線交直線CD于點M,在P、Q運(yùn)動的過程中,是否在平面內(nèi)有一點N,使四邊形QPMN為正方形?若存在,求出N點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,⊙O1與x軸交于A、B兩點,與y軸正半軸交于C點,已知A(-1,0),O1(1,0)
(1)求出C點的坐標(biāo);
(2)過點C作CDAB交⊙O1于D,若過點C的直線恰好平分四邊形ABCD的面積,求出該直線的解析式;
(3)如圖,已知M(1,-2
3
),經(jīng)過A、M兩點有一動圓⊙O2,過O2作O2E⊥O1M于E,若經(jīng)過點A有一條直線y=kx+b(k>0)交⊙O2于F,使AF=2O2E,求出k、b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形OABC的頂點B的坐標(biāo)為B(8,7),動點P從原點O出發(fā),以每秒2個單位的速度沿折線OA-AB運(yùn)動,到點B時停止,同時,動點Q從點C出發(fā),以每秒1個單位的速度在線段CO上運(yùn)動,當(dāng)一個點停止時,另一個點也隨之而停止.在運(yùn)動過程中,當(dāng)線段PQ恰好經(jīng)過點M(3,2)時,運(yùn)動時間t的值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某地長途汽車客運(yùn)公司規(guī)定,旅客可隨身攜帶一定重量的行李,如果超過規(guī)定質(zhì)量,則需要購買行李票,行李票費(fèi)用y(元)是行李重量x(千克)的一次函數(shù),根據(jù)圖象回答下列問題:
(1)求y與x之間的函數(shù)關(guān)系式.
(2)求旅客最多可免費(fèi)攜帶多少千克行李?
(3)某旅客所買的行李票的費(fèi)用為4~15元,求他所帶行李的質(zhì)量范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知點A(2,3)、B(6,3),連結(jié)AB.如果點P在直線y=x+1上,且點P到直線AB的距離大于或等于1,那么稱點P是線段AB的“疏遠(yuǎn)點”.
(1)判斷點C(
5
2
,
7
2
)是否是線段AB的“疏遠(yuǎn)點”,并說明理由;
(2)若點Q(m,n)是線段AB的“疏遠(yuǎn)點”,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖中的圖象(折線ABCDE)描述了一汽車在某一直道上的行駛過程中,汽車離出發(fā)地的距離s(千米)和行駛時間t(小時)之間的函數(shù)關(guān)系.根據(jù)圖中提供的信息,給出下列說法:
①汽車共行駛了120千米;
②汽車在行駛途中停留了0.5小時;
③汽車在整個行駛過程中的平均速度為
160
3
千米/時;
④汽車自出發(fā)后3小時至4.5小時之間行駛的速度在逐漸減少.
其中正確的說法有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知直線l:y=-
3
3
x+
3
交x軸于點A,交y軸于點B,將△AOB沿直線l翻折,點O的對應(yīng)點C恰好落在雙曲線y=
k
x
(k>0)
上.
(1)求k的值;
(2)將△ABC繞AC的中點旋轉(zhuǎn)180°得到△PCA,請判斷點P是否在雙曲線y=
k
x
上,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案