【題目】如圖1,在平面直角坐標系中,拋物線 y=x2﹣x﹣與x軸交于A、B、兩點(點A在點B的左側),與y軸交于點C.
(1)判斷△ABC形狀,并說明理由.
(2)在拋物線第四象限上有一點,它關于x軸的對稱點記為點P,點M是直線BC上的一動點,當△PBC的面積最大時,求PM+MC的最小值;
(3)如圖2,點K為拋物線的頂點,點D在拋物線對稱軸上且縱坐標為,對稱軸右側的拋物線上有一動點E,過點E作EH∥CK,交對稱軸于點H,延長HE至點F,使得EF=,在平面內(nèi)找一點Q,使得以點F、H、D、Q為頂點的四邊形是軸對稱圖形,且過點Q的對角線所在的直線 是對稱軸,請問是否存在這樣的點Q,若存在請直接寫出點E的橫坐標,若不存在,請說明理由.
【答案】(1)結論:△ABC是直角三角形(2)(3)存在.滿足條件的點E的橫坐標為或或或
【解析】試題分析:(1)由△AOC∽△COB,推出∠ACO=∠OBC,由∠OBC+∠OCB=90°,推出∠ACO+∠BCO=90°,推出∠ACB=90°,得出結論;
(2)如圖1中,設第四象限拋物線上一點N(m, x2﹣x﹣),點N關于x軸的對稱點P(m,-x2+x+),作過B、C分別作y軸、x軸的平行線交于點G,連接PG,可得S△PBC=S△PCG+S△PBG﹣S△BCG,由此可得△PBC面積最大時的點P的坐標,如圖2,作ME⊥CG于點M,由△CEM∽△BOC,根據(jù)對應邊成比例,得出PM+CM=PM+ME,根據(jù)垂線段最短可知,當PE⊥CG時,PM+ME最短,由此即可解決;
(3)分三種情況討論,①如圖3,當DH=HF,HQ平分∠DHF時,以嗲F、H、D、Q為頂點的四邊形是軸對稱圖形,且過點Q的對角線所在的直線是對稱軸,②如圖4,當DH=HF,HQ平分∠DHF時,以點F、H、D、Q為頂點的四邊形是軸對稱圖形,且過點Q的對角線所在的直線是對稱軸,③如圖5,當DH=DF,DQ平分∠HDF時,以點F、H、D、Q為頂點的四邊形是軸對稱圖形,且過點Q的對角線所在的直線是對稱軸,分別求解即可.
試題解析:(1)結論:△ABC是直角三角形.理由如下,
對于拋物線 y=x2﹣x﹣,令y=0得 x2﹣x﹣=0,解得x=﹣或3;令x=0得y=﹣,
∴A(﹣,0),C(0,﹣),B(3,0),
∴OA=,OC=,OB=3,
∴==,∵∠AOC=∠BOC,
∴△AOC∽△COB,
∴∠ACO=∠OBC,
∵∠OBC+∠OCB=90°,
∴∠ACO+∠BCO=90°,
∴∠ACB=90°.
(也可以求出AC、BC、AB利用勾股定理的逆定理證明).
(2)如圖1中,設第四象限拋物線上一點N(m, m2﹣m﹣),點N關于x軸的對稱點P(m,﹣m2+m+),作過B、C分別作y軸,x軸的平行線交于點G,連接PG.
∵G(3,﹣),
∴S△PBC=S△PCG+S△PBG﹣S△BCG=××(﹣m2+m+2)+×(3﹣m)﹣××=﹣(m﹣)2+.
∵﹣<0,
∴當m=時,△PBC的面積最大,
此時P(,),
如圖2中,作ME⊥CG于M.
∵CG∥OB,
∴∠OBC=∠ECM,∵∠BOC=∠CEM,
∴△CEM∽△BOC,
∵OC:OB:BC=1:3:,
∴EM:CE:CM=1:3:,
∴EM=CM,
∴PM+CM=PM+ME,
∴根據(jù)垂線段最短可知,當PE⊥CG時,PM+ME最短,
∴PM+MC的最小值為+=.
(3)存在.理由如下,
①如圖3中,當DH=HF,HQ平分∠DHF時,以點F、H、D、Q為頂點的四邊形是軸對稱圖形,且過點Q的對角線所在的直線 是對稱軸.
作CG⊥HK于G,PH∥x軸,EP⊥PH于P.
∵FH∥CK,K(,﹣),
易知CG:GK:CK=3:4:5,
由△EPH∽△KGC,得PH:PE:EH=3:4:5,設E((n, n2﹣n﹣),則HE=(n﹣),PE=(n﹣),
∵DH=HF,
∴+[﹣n2+n+﹣(n﹣)]=(n﹣)+,
解得n=或(舍棄).
②如圖4中,當DH=HF,HQ平分∠DHF時,以點F、H、D、Q為頂點的四邊形是軸對稱圖形,且過點Q的對角線所在的直線 是對稱軸.
同法可得[n2﹣n﹣+(n﹣)]﹣=(n﹣)+,
解得n=+或﹣(舍棄).
③如圖5中,當DH=DF,DQ平分∠HDF時,以點F、H、D、Q為頂點的四邊形是軸對稱圖形,且過點Q的對角線所在的直線 是對稱軸.
設DQ交HF于M.由△DHM∽△CKG,可知HM:DH=4:5,
[(n﹣)+]:[n2﹣n﹣+(n﹣)﹣]=4:5,
解得n=+或=﹣(舍棄),
④如圖6中,當FQ平分∠DFH時,滿足條件,此時=.
∴5× [n2﹣n﹣﹣+(n﹣)]=4[(n﹣)+],
解得:n=或(舍棄)
綜上所,滿足條件的點E的橫坐標為或+或+或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,D在AB的延長線上,且∠BCD=∠A.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為3,CD=4,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓柱形玻璃杯,高為,底面周長為,在杯內(nèi)離杯底的點處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿與蜂蜜相對的點處,則螞蟻到達蜂蜜的最短距離為( ).
A. 15B. C. 12D. 18
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=2x+6交x軸于A,交y軸于B.
(1)直接寫出A( , ),B( , );
(2)如圖1,點E為直線y=x+2上一點,點F為直線y=x上一點,若以A,B,E,F為頂點的四邊形是平行四邊形,求點E,F的坐標
(3)如圖2,點C(m,n)為線段AB上一動點,D(﹣7m,0)在x軸上,連接CD,點M為CD的中點,求點M的縱坐標y和橫坐標x之間的函數(shù)關系式,并直接寫出在點C移動過程中點M的運動路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝廠生產(chǎn)一種夾克和T恤,夾克每件定價120元,T恤每件定價60元.廠方在開展促銷活動期間,向客戶提供兩種優(yōu)惠方案:①買一件夾克送一件T恤;②夾克和T恤都按定價的80%付款.現(xiàn)某客戶要到該服裝廠購買夾克30件,T恤件(>30).
(1)若該客戶按方案①購買,需付款 元(用含x的代數(shù)式表示);
若該客戶按方案②購買,需付款 元(用含x的代數(shù)式表示);
(2)若=40,通過計算說明按方案①、方案②哪種方案購買較為合算?
(3)若兩種優(yōu)惠方案可同時使用,當=40時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若將代數(shù)式中的任意兩個字母交換,代數(shù)式不變,則稱這個代數(shù)式為完全對稱式,如就是完全對稱式(代數(shù)式中換成b,b換成,代數(shù)式保持不變).下列三個代數(shù)式:①;②;③.其中是完全對稱式的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩個超市以同樣的價格出售同樣的商品,但各自推出不同的優(yōu)惠方案:在甲超市累計購物超過100元后,超過100元的部分按80%收費;在乙超市累計購物超過50元后,超過50元的部分按90%收費.設小明在同一超市累計購物元,他在甲超市購物實際付費(元).在乙超市購物實際付費(元).
(1)分別求出,與的函數(shù)關系式.
(2)隨著小明累計購物金額的變化,分析他在哪家超市購物更合算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩組工人同時加工某種零件,乙組工作中有一次停產(chǎn)更換設備,更換設備
后,乙組的工作效率是原來的2倍.兩組各自加工零件的數(shù)量(件)與時間(時)的函數(shù)圖
象如圖所示.
(1)求甲組加工零件的數(shù)量y與時間之間的函數(shù)關系式.(2分)
(2)求乙組加工零件總量的值.(3分)
(3)甲、乙兩組加工出的零件合在一起裝箱,每夠300件裝一箱,零件裝箱的時間忽略不計,求經(jīng)過多長時間恰好裝滿第1箱?再經(jīng)過多長時間恰好裝滿第2箱?(5分)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點,過點D作⊙O的切線交BC于點M,則DM的長為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com