【題目】我們知道某些代數恒等式可用一些卡片拼成的圖形面積來解釋,例如:圖A可以用來解釋,實際上利用一些卡片拼成的圖形面積也可以對某些二次三項式進行因式分解.
(1)圖B可以解釋的代數恒等式是 ;
(2)現有足夠多的正方形和矩形卡片(如圖C),試畫出一個用若干張1號卡片、2號卡片和3號卡片拼成的矩形(每兩塊紙片之間既不重疊,也無空隙,拼出的圖中必須保留拼圖的痕跡),使該矩形的面積為,并利用你所畫的圖形面積對進行因式分解.
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB=30,∠AOB 內有一定點 P,且 OP=12,在 OA 上有一動點 Q,OB 上有 一動點 R。若△PQR 周長最小,則最小周長是( )
A. 6 B. 12 C. 16 D. 20
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(9分) “先學后教”課題組對學生參與小組合作的深度和廣度進行評價,其評價項目為主動質疑、獨立思考、專注聽講、講解題目四項.課題組隨機抽取了若干名初中學生的參與情況,繪制了如圖兩幅不完整的統(tǒng)計圖,請根據圖中所給信息解答下列問題:
(1)在這次評價中,一共抽查了______名學生;
(2)請將條形統(tǒng)計圖補充完整;
(3)求出扇形統(tǒng)計圖中,“主動質疑”所對應扇形的圓心角的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】張老師每天從甲地到乙地鍛煉身體,甲、乙兩地相距14千米,已知他步行的平均速度為80米/分,跑步的平均速度為200米/分,若他要在不超過10分鐘的時間內從甲地到達乙地,至少需要跑步多少分鐘?設他需要跑步x分鐘,則列出的不等式( )
A.80x+200(10-x)≤1.4B.80x+200(10-x)≤1400
C.200x+80(10-x)≥1.4D.200x+80(10-x)≥1400
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】提出問題:如圖①,在四邊形ABCD中,P是AD邊上任意一點,
△PBC與△ABC和△DBC的面積之間有什么關系?
探究發(fā)現:為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:
(1)當AP=AD時(如圖②):
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD.
∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,
∴S△CDP=S△CDA.
∴S△PBC=S四邊形ABCD﹣S△ABP﹣S△CDP
=S四邊形ABCD﹣S△ABD﹣S△CDA
=S四邊形ABCD﹣(S四邊形ABCD﹣S△DBC)﹣(S四邊形ABCD﹣S△ABC)
=S△DBC+S△ABC.
(2)當AP=AD時,探求S△PBC與S△ABC和S△DBC之間的關系,寫出求解過程;
(3)當AP=AD時,S△PBC與S△ABC和S△DBC之間的關系式為: ;
(4)一般地,當AP=AD(n表示正整數)時,探求S△PBC與S△ABC和S△DBC之間的關系,寫出求解過程;
問題解決:當AP=AD(0≤≤1)時,S△PBC與S△ABC和S△DBC之間的關系式為: .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=2,AD=4,M是AD的中點,點E是線段AB上一動點(可以運動到點A和點B),連接EM并延長交線段CD的延長線于點F.
(1) 如圖1,①求證:AE=DF; ②若EM=3,∠FEA=45°,過點M作MG⊥EF交線段BC于點G,請直接寫出△GEF的的形狀,并求出點F到AB邊的距離;
(2)改變平行四邊形ABCD中∠B的度數,當∠B=90°時,可得到矩形ABCD(如圖2),請判斷△GEF的形狀,并說明理由;
(3)在(2)的條件下,取MG中點P,連接EP,點P隨著點E的運動而運動,當點E在線段AB上運動的過程中,請直接寫出△EPG的面積S的范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com