【題目】如圖,已知,直線分別交、于點(diǎn),,,.
(1)已知,求;
(2)求證:平分;
(3)若,則的度數(shù)為______.
【答案】(1)20°;(2)證明見解析;(3)60°.
【解析】
(1)根據(jù)平行線的性質(zhì)可得∠DFG=20°,再由FH⊥FB可求出∠DFH;
(2)延長(zhǎng)BF至Q,可證明∠BFE=∠GFC,根據(jù)平行線的性質(zhì)可得∠BFD=∠GFC,利用∠HFG+∠GFQ=∠HFD+∠DFB=90°可證明出結(jié)論;
(3)由得,從而求出∠DFB=30°,進(jìn)而得出∠DFH=60°,由角的平分線的定義可得結(jié)論.
(1)∵AB∥CD,
∴∠DFB=∠B,
∵∠B=20°,
∴∠DFB=20°
∵FH⊥FB.
∴∠HFB=90°,即∠HFD+∠DFB=90°,
∴∠HFD =90°-∠DFB=90°-20°=70°;
(2)延長(zhǎng)BF至Q,則∠BFE=∠GFQ,如圖,
∵HF⊥BF,
∴HF⊥FQ,
∴∠HFG+∠GFQ=90°,
∵AB∥CD,
∴∠B=∠DFB,
∵∠EFB=∠B,
∴∠DFB=∠BFE,
∴∠GFQ=∠DFB,
∵∠HFD+∠DFB=90°,
∴∠HFG=∠HFD,即FH平分∠GFD;
(3)∵AB∥CD,
∴∠DFB=∠B,
∵∠EFB=∠B,
∴∠DFB=∠EFB=∠B
∵
∴
∵,
∴∠DFB=60°,
∴∠BFE=30°,
∴∠GFQ=30°,
∵∠HFQ=90°,
∴∠HFG=90°-∠GFQ=90°-30°=60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店銷售甲、乙兩種商品,現(xiàn)有如下信息:
請(qǐng)結(jié)合以上信息,解答下列問(wèn)題:
(1)求甲、乙兩種商品的進(jìn)貨單價(jià);
(2)已知甲、乙兩種商品的零售單價(jià)分別為2元、3元,該商店平均每天賣出甲商品500件和乙商品1300件,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),甲種商品零售單價(jià)每降0.1元,甲種商品每天可多銷售100件,商店決定把甲種商品的零售單價(jià)下降m(m>0)元,在不考慮其他因素的條件下,求當(dāng)m為何值時(shí),商店每天銷售甲、乙兩種商品獲取的總利潤(rùn)為1800元(注:?jiǎn)渭麧?rùn)=零售單價(jià)﹣進(jìn)貨單價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段AC,點(diǎn)D為AC的中點(diǎn),B是直線AC上的一點(diǎn),且 BCAB,BD=1,則AC=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,若拋物線L1的頂點(diǎn)A在拋物線L2上,拋物線L2的頂點(diǎn)B在拋物線L1上(點(diǎn)A與點(diǎn)B不重合),我們把這樣的兩拋物線L1、L2稱為“伴隨拋物線”,可見一條拋物線的“伴隨拋物線”可以有多條.
(1)拋物線L1:y=-x2+4x-3與拋物線L2是“伴隨拋物線”,且拋物線L2的頂點(diǎn)B的橫坐標(biāo)為4,求拋物線L2的表達(dá)式;
(2)若拋物線y=a1(x-m)2+n的任意一條“伴隨拋物線”的表達(dá)式為y=a2(x-h)2+k,請(qǐng)寫出a1與a2的關(guān)系式,并說(shuō)明理由;
(3)在圖②中,已知拋物線L1:y=mx2-2mx-3m(m>0)與y軸相交于點(diǎn)C,它的一條“伴隨拋物線”為L2,拋物線L2與y軸相交于點(diǎn)D,若CD=4m,求拋物線L2的對(duì)稱軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用三個(gè)同(1)圖的長(zhǎng)方形和兩個(gè)同(2)圖的長(zhǎng)方形用兩種方式去覆蓋一個(gè)大的長(zhǎng)方形,兩種方式為覆蓋的部分(陰影部分)的周長(zhǎng)一樣,那么(1)圖中長(zhǎng)方形的面積與(2)圖長(zhǎng)方形的面積的比是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用如圖1的二維碼可以進(jìn)行身份識(shí)別.某校建立了一個(gè)身份識(shí)別系統(tǒng),圖2是某個(gè)學(xué)生的識(shí)別圖案,黑色小正方形表示1,白色小正方形表示0,將第一行數(shù)字從左到右依次記為a,b,c,d,那么可以轉(zhuǎn)換為該生所在班級(jí)序號(hào),其序號(hào)為a×23+b×22+c×21+d×20,如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號(hào)為0×23+1×22+0×21+1×20=5,表示該生為5班學(xué)生.表示6班學(xué)生的識(shí)別圖案是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,位于第二象限的點(diǎn)在反比例函數(shù)的圖像上,點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,直線經(jīng)過(guò)點(diǎn),且與反比例函數(shù)的圖像交于點(diǎn).
(1)當(dāng)點(diǎn)的橫坐標(biāo)是-2,點(diǎn)坐標(biāo)是時(shí),分別求出的函數(shù)表達(dá)式;
(2)若點(diǎn)的橫坐標(biāo)是點(diǎn)的橫坐標(biāo)的4倍,且的面積是16,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了解九年級(jí)學(xué)生的身體素質(zhì)測(cè)試情況,隨機(jī)抽取了該市九年級(jí)部分學(xué)生的身體素質(zhì)測(cè)試成績(jī)作為樣本,按A(優(yōu)秀),B(良好),C(合格),D(不合格)四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制了下面兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次共調(diào)查了多少名學(xué)生?
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并計(jì)算扇形統(tǒng)計(jì)圖中“A”部分所對(duì)應(yīng)的圓心角的度數(shù).
(3)該市九年級(jí)共有8000名學(xué)生參加了身體素質(zhì)測(cè)試,估計(jì)測(cè)試成績(jī)?cè)诹己靡陨希ê己茫┑娜藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在直角梯形ABCD中,動(dòng)點(diǎn)P從B點(diǎn)出發(fā),沿B→C→D→A勻速運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,△ABP的面積為y,圖象如圖2所示.
(1)在這個(gè)變化中,自變量、因變量分別是 、 ;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)的路程x=4時(shí),△ABP的面積為y= ;
(3)求AB的長(zhǎng)和梯形ABCD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com