如圖,在?ABCD中,點E是CD的中點,連接AE并延長交BC的延長線于F點.
(1)求證:△ADE≌△FCE;
(2)若CF=5,求出BC的長.

【答案】分析:(1)利用平行四邊形的性質,可以得到角相等,又因為點E是CD的中點,易證△ADE≌△FCE(AAS或ASA);
(2)由全等三角形的對應邊相等,易得AD=CF;根據(jù)平行四邊形對邊相等,易得BC=AD.
解答:(1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BF,
∴∠D=∠ECF,
∵E是CD的中點,
∴DE=CE,
又∵∠AED=∠FEC,
∴△ADE≌△FCE;

(2)解:∵△ADE≌△FCE,
∴AD=CF=5,
∴在?ABCD中,BC=AD=5.
點評:此題考查了平行四邊形的性質:平行四邊形的對邊平行且相等.還考查了全等三角形的判定與性質.解題時注意數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在?ABCD中,對角線AC、BD相交于點O,AB=
29
,AC=4,BD=10.
問:(1)AC與BD有什么位置關系?說明理由.
(2)四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,在?ABCD中,∠A的平分線交BC于點E,若AB=10cm,AD=14cm,則EC=
4
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•長春一模)感知:如圖①,在菱形ABCD中,AB=BD,點E、F分別在邊AB、AD上.若AE=DF,易知△ADE≌△DBF.
探究:如圖②,在菱形ABCD中,AB=BD,點E、F分別在BA、AD的延長線上.若AE=DF,△ADE與△DBF是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展:如圖③,在?ABCD中,AD=BD,點O是AD邊的垂直平分線與BD的交點,點E、F分別在OA、AD的延長線上.若AE=DF,∠ADB=50°,∠AFB=32°,求∠ADE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•犍為縣模擬)甲題:已知關于x的一元二次方程x2=2(1-m)x-m2的兩實數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設y=x1+x2,當y取得最小值時,求相應m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點E,BF⊥CD于點F,AC與BE、BF分別交于點G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,∠ADB=90°,CA=10,DB=6,OE⊥AC于點O,連接CE,則△CBE的周長是
2
13
+4
2
13
+4

查看答案和解析>>

同步練習冊答案