【題目】如圖,已知矩形中,相交于,平分,,則的度數(shù)為(

A.B.C.D.

【答案】B

【解析】

因?yàn)?/span>DE平分∠ADC,可證得△ECD為等腰直角三角形,得EC=CD, 因?yàn)椤?/span>BDE=15°,可求得∠CDO=60°,易證△CDO為等邊三角形,等量代換可得CE=CO,即∠COE=CEO,而∠ECO=30°,利用三角形內(nèi)角和為180°,即可求得∠COE=75°

解:∵四邊形ABCD為矩形,且DE平分∠ADC,

∴∠CDE=CED=45,即△ECD為等腰直角三角形,

CE=CD,

∵∠BDE=15°,

∴∠CDO=45°+15°=60°

OD=OC,

∴△CDO為等邊三角形,即OC=OD=CD,

CE=OC,

∴∠COE=CEO

而∠OCE=90°-60°=30°,

∴∠COE=CEO==75°

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生會(huì)發(fā)現(xiàn)同學(xué)們就餐時(shí)剩余飯菜較多,浪費(fèi)嚴(yán)重,于是準(zhǔn)備在校內(nèi)倡導(dǎo)“光盤(pán)行動(dòng)”,讓同學(xué)們珍惜糧食,為了讓同學(xué)們理解這次活動(dòng)的重要性,校學(xué)生會(huì)在某天午餐后,隨機(jī)調(diào)查了部分同學(xué)這餐飯菜的剩余情況,并將結(jié)果統(tǒng)計(jì)后繪制成了如圖所示的不完整的統(tǒng)計(jì)圖.

1)這次被調(diào)查的同學(xué)共有   人;

2)補(bǔ)全條形統(tǒng)計(jì)圖,并在圖上標(biāo)明相應(yīng)的數(shù)據(jù);

3)校學(xué)生會(huì)通過(guò)數(shù)據(jù)分析,估計(jì)這次被調(diào)查的所有學(xué)生一餐浪費(fèi)的食物可以供50人食用一餐.據(jù)此估算,該校18000名學(xué)生一餐浪費(fèi)的食物可供多少人食用一餐.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題8分)ABC在平面直角坐標(biāo)系中的位置如圖所示,其中每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.

(1)按要求作圖:

①畫(huà)出ABC關(guān)于原點(diǎn)O的中心對(duì)稱圖形A1B1C1;

②畫(huà)出將ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到AB2C2,

(2)回答下列問(wèn)題:

①△A1B1C1中頂點(diǎn)A1坐標(biāo)為 ;②若P(a,b)為ABC邊上一點(diǎn),則按照(1)中①作圖,點(diǎn)P對(duì)應(yīng)的點(diǎn)P1的坐標(biāo)為

【答案】(1)作圖見(jiàn)解析;(2)(1,-2)(-a,-b)

【解析】試題分析:(1)首先找出對(duì)應(yīng)點(diǎn)的位置,再順次連接即可;

2根據(jù)圖形可直接寫(xiě)出坐標(biāo);根據(jù)關(guān)于原點(diǎn)對(duì)稱點(diǎn)的坐標(biāo)特點(diǎn)可得答案.

試題解析:(1)如圖所示:

2根據(jù)圖形可得A1坐標(biāo)為(2﹣4);

點(diǎn)P1的坐標(biāo)為(﹣a﹣b).

故答案為:(﹣2,﹣4);(﹣a,﹣b).

考點(diǎn):作圖-旋轉(zhuǎn)變換.

型】填空
結(jié)束】
23

【題目】在學(xué)習(xí)了普查與抽樣調(diào)查之后,某校八(1)班數(shù)學(xué)興趣小組對(duì)該校學(xué)生的視力情況進(jìn)行了抽樣調(diào)查,并畫(huà)出了如圖所示的條形統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息解決下列問(wèn)題:

(1)本次抽查活動(dòng)中共抽查了  名學(xué)生;

(2)已知該校七年級(jí)、八年級(jí)、九年級(jí)學(xué)生數(shù)分別為360人、400人、540人.

①試估算:該校九年級(jí)視力不低于4.8的學(xué)生約有  名;

②請(qǐng)你幫忙估算出該校視力低于4.8的學(xué)生數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018512日是我國(guó)第十個(gè)全國(guó)防災(zāi)減災(zāi)日,也是汶川地震十周年.為了弘揚(yáng)防災(zāi)減災(zāi)文化,普及防災(zāi)減災(zāi)知識(shí)和技能,鄭州W中學(xué)通過(guò)學(xué)校安全教育平臺(tái)號(hào)召全校學(xué)生進(jìn)行學(xué)習(xí),并對(duì)學(xué)生學(xué)習(xí)成果進(jìn)行了隨機(jī)抽取,現(xiàn)對(duì)部分學(xué)生成績(jī)(x為整數(shù),滿分100分)進(jìn)行統(tǒng)計(jì).繪制了如圖尚不完整的統(tǒng)計(jì)圖表:

調(diào)查結(jié)果統(tǒng)計(jì)表

組別

分?jǐn)?shù)段

頻數(shù)

A

50≤x<60

a

B

60≤x<70

80

C

70≤x<80

100

D

80≤x<90

150

E

90≤x<100

120

合計(jì)

b

根據(jù)以上信息解答下列問(wèn)題:

(1)填空:a=   ,b=   ;

(2)扇形統(tǒng)計(jì)圖中,m的值為   ,“D”所對(duì)應(yīng)的圓心角的度數(shù)是   度;

(3)本次調(diào)查測(cè)試成績(jī)的中位數(shù)落在   組內(nèi);

(4)若參加學(xué)習(xí)的同學(xué)共有2000人,請(qǐng)你估計(jì)成績(jī)?cè)?/span>90分及以上的同學(xué)大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司分兩次采購(gòu)甲、乙兩種商品,具體情況如下:

1)求甲、乙商品每件各多少元?

2)公司計(jì)劃第三次采購(gòu)甲、乙兩種商品共31件,要求花費(fèi)資金不超過(guò)475元,問(wèn)最多可購(gòu)買(mǎi)甲商品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)是雙曲線在第一象限上的一動(dòng)點(diǎn),連接,以為一邊作等腰直角三角形),點(diǎn)在第四象限,隨著點(diǎn)的運(yùn)動(dòng),點(diǎn)的位置也不斷的變化,但始終在某個(gè)函數(shù)圖像上運(yùn)動(dòng),則這個(gè)函數(shù)表達(dá)式為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器超市銷售每臺(tái)進(jìn)價(jià)分別為200,170元的A,B兩種型號(hào)的電風(fēng)扇,表中是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

5臺(tái)

1800

第二周

4臺(tái)

10臺(tái)

3100

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入-進(jìn)貨成本)

(1)A,B兩種型號(hào)的電風(fēng)扇的銷售單價(jià).

(2)若超市準(zhǔn)備用不多于5400元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái)A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?

(3)(2)的條件下,超市銷售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)為1400元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型超市從生產(chǎn)基地購(gòu)進(jìn)一批水果,運(yùn)輸過(guò)程中質(zhì)量損失10%,假設(shè)超市購(gòu)進(jìn)這批水果的總量為m千克,每千克進(jìn)價(jià)為n元(不計(jì)超市其它費(fèi)用).

1)如果超市在進(jìn)價(jià)的基礎(chǔ)上提高10%作為售價(jià),此時(shí):

①超市最終的銷售額為_________元(用含m、n的代數(shù)式表示);

②在這一次銷售中,超市_______(填:盈利或虧本).

2)如果超市至少要獲得17%的利潤(rùn),請(qǐng)通過(guò)計(jì)算說(shuō)明這種水果的售價(jià)最低應(yīng)提高百分之幾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC,AD△ABC的角平分線,點(diǎn)OAB的中點(diǎn),連接DO并延長(zhǎng)到點(diǎn)E,使OE=OD,連接AEBE

1)求證:四邊形AEBD是矩形;

2)當(dāng)△ABC滿足什么條件時(shí),矩形AEBD是正方形,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案