【題目】方程x3+80的根是_____

【答案】x=﹣2

【解析】

把方程變形為形為x3=8,利用立方根求解即可

解:方程可變形為x3=﹣8

因?yàn)椋ī?/span>23=﹣8,

所以方程的解為x=﹣2

故答案為:x=﹣2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)某個(gè)多邊形一個(gè)頂點(diǎn)的所有對(duì)角線,將這個(gè)多邊形分成7個(gè)三角形,這個(gè)多邊形是   邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題:①兩直線平行,內(nèi)錯(cuò)角相等;②對(duì)頂角相等;③等腰三角形的兩個(gè)底角相等;④菱形的對(duì)角線互相垂直,其中逆命題是真命題的是( 。

A. ①②③④B. ①③④C. ①③D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=與x軸交于A、B兩點(diǎn).

(1)點(diǎn)A的坐標(biāo)是 ,點(diǎn)B的坐標(biāo)是 ,拋物線的對(duì)稱(chēng)軸是直線 ;

(2)將拋物線向上平移m個(gè)單位,與x軸交于C、D兩點(diǎn)(點(diǎn)C 在點(diǎn)D的左邊)若CD:AB=3:4,求m的值;

(3)點(diǎn)P是(2)中平移后的拋物線上y軸右側(cè)部分的點(diǎn),直線y=2x+b(b0)與 x、y軸分別交于點(diǎn)E、F.若以EF為直角邊的三角形PEF與OEF相似,直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹(shù)DE的高度,他們?cè)谶@棵樹(shù)的正前方一座樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹(shù)頂端D的仰角為30°,朝著這棵樹(shù)的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得樹(shù)頂端D的仰角為60°.已知A點(diǎn)的高度AB為2米,臺(tái)階AC的坡度為1:(即AB:BC=1:),且B、C、E三點(diǎn)在同一條直線上.請(qǐng)根據(jù)以上條件求出樹(shù)DE的高度(側(cè)傾器的高度忽略不計(jì)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若代數(shù)式3x21的值等于28,則x的值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AE平分BAD,交BC于點(diǎn)E,BF平分ABC,交AD于點(diǎn)F,AEBF交于點(diǎn)P,連接EF,PD

1)求證:四邊形ABEF是菱形;

2)若AB=4AD=6,ABC=60°,求tanDPF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店為了促銷(xiāo)一種定價(jià)為26/千克雞蛋糕,采取下列方式優(yōu)惠銷(xiāo)售.若一次性購(gòu)買(mǎi)不超過(guò)5千克按原價(jià)付款;若一次性購(gòu)買(mǎi)5千克以上超過(guò)部分按原價(jià)八折付款,如果小明有338元錢(qián),那么他最多可以購(gòu)買(mǎi)該雞蛋糕________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形的邊長(zhǎng).某一時(shí)刻,動(dòng)點(diǎn)點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)點(diǎn)出發(fā)沿方向以的速度向點(diǎn)勻速運(yùn)動(dòng),問(wèn):

(1)經(jīng)過(guò)多少時(shí)間,的面積等于矩形面積的?

(2)是否存在時(shí)刻t,使以A,M,N為頂點(diǎn)的三角形與相似?若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案