操作:如圖①,點(diǎn)O為線段MN的中點(diǎn),直線PQ與MN相交于點(diǎn)O,請(qǐng)利用圖①畫出一對(duì)以點(diǎn)O為對(duì)稱中心的全等三角形。

根據(jù)上述操作得到的經(jīng)驗(yàn)完成下列探究活動(dòng):(本題12分)

探究一:如圖②,在四邊形ABCD中,AB∥DC,E為BC邊的中點(diǎn),∠BAE=∠EAF,AF與DC的延長(zhǎng)線相交于點(diǎn)F。試探究線段AB與AF、CF之間的等量關(guān)系,并證明你的結(jié)論;

探究二:如圖③,DE、BC相交于點(diǎn)E,BA交DE于點(diǎn)A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB。若AB=5,CF=1,求DF的長(zhǎng)度。

 

【答案】

解:(1)如圖

(2)結(jié)論:AB=AF+CF.

證明:分別延長(zhǎng)AE、DF交于點(diǎn)M.

∵E為BC的中點(diǎn),

∴BE=CE,

∵AB∥CD,

∴∠BAE=∠M,

在△ABE與△MCE中,

∴△ABE≌△MCE,

∴AB=MC,

又∵∠BAE=∠EAF,

∴∠M=∠EAF,

∴MF=AF,

又∵M(jìn)C=MF+CF,

∴AB=AF+CF;

(3)分別延長(zhǎng)DE、CF交于點(diǎn)G.

∵AB∥CF,

∴∠B=∠C,∠BAE=∠G,

∴△ABE∽△GCE,

∵AB=5,

∴GC=10,

∵FC=1,

∴GF=9,

∵AB∥CF,

∴∠BAE=∠G,

又∵∠BAE=∠EDF,

∴∠G=∠EDF,

∴GF=DF,

∴DF=9.

【解析】(1)根據(jù)全等三角形的判定中的邊角邊為作圖的理論依據(jù),來(lái)畫出全等三角形.

(2)本題可通過(guò)作輔助線將AB,F(xiàn)C,AF構(gòu)建到一個(gè)相關(guān)聯(lián)的三角形中,可延長(zhǎng)AE、DF交于點(diǎn)M,不難證明△ABE≌△MCE,那么AB=CF,現(xiàn)在只要將AF也關(guān)聯(lián)到三角形BEC中,我們發(fā)現(xiàn),∠BAE=∠EAF,∠BAE=∠M(AB∥CD),那么三角形AMF就是個(gè)等腰三角形,AF=MF,因此AB=MC=MF+FC=AF+FC;

(3)本題的作法與(2)類似,延長(zhǎng)DE、CF交于點(diǎn)G,不難得出△ABE∽△GCE,

可根據(jù)線段的比例關(guān)系和AB的值得到CG的值,然后就能得出FG的值,同(2)可得出△DFG是等腰三角形,那么DF=GF,這樣就求出DF的值了.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、操作:如圖1,點(diǎn)O為線段MN的中點(diǎn),直線PQ與MN相交于點(diǎn)O,請(qǐng)利用圖1畫出一對(duì)以點(diǎn)O為對(duì)稱中心的全等三角形.
探究:如圖2,在四邊形ABCD中,AB∥DC,E為BC邊的中點(diǎn),∠BAE=∠EAF,AF與DC的延長(zhǎng)線相交于點(diǎn)F.試探究線段AB與AF、
FC之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•靜海縣二模)在平面直角坐標(biāo)系中,兩個(gè)全等的直角三角板OAB和DCE重疊在一起,∠AOB=60°,B(2,0).固定△OAB不動(dòng),將△DCE進(jìn)行如下操作:
(Ⅰ) 如圖①,△DCE沿x軸向右平移(D點(diǎn)在線段AB內(nèi)移動(dòng)),連接AC、AD、CB,四邊形ADBC的形狀在不斷的變化,它的面積變化嗎?若不變,求出其面積;若變化,請(qǐng)說(shuō)明理由.
(Ⅱ)如圖②,當(dāng)點(diǎn)D為OB的中點(diǎn)時(shí),請(qǐng)你猜想四邊形ADBC的形狀,并說(shuō)明理由.
(Ⅲ)如圖③,在(Ⅱ)中,將點(diǎn)D固定,然后繞D點(diǎn)按順時(shí)針將△DCE旋轉(zhuǎn)30°,在x軸上求一點(diǎn)P,使|AP-CP|最大.請(qǐng)直接寫出P點(diǎn)的坐標(biāo)和最大值,不要求說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

操作:如圖1,點(diǎn)O為線段MN的中點(diǎn),直線PQ與MN相交于點(diǎn)O,請(qǐng)利用圖1畫出一對(duì)以點(diǎn)O為對(duì)稱中心的全等三角形.
探究:如圖2,在四邊形ABCD中,AB∥DC,E為BC邊的中點(diǎn),∠BAE=∠EAF,AF與DC的延長(zhǎng)線相交于點(diǎn)F.試探究線段AB與AF、
FC之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:豐臺(tái)區(qū)二模 題型:解答題

操作:如圖1,點(diǎn)O為線段MN的中點(diǎn),直線PQ與MN相交于點(diǎn)O,請(qǐng)利用圖1畫出一對(duì)以點(diǎn)O為對(duì)稱中心的全等三角形.
探究:如圖2,在四邊形ABCD中,ABDC,E為BC邊的中點(diǎn),∠BAE=∠EAF,AF與DC的延長(zhǎng)
精英家教網(wǎng)
線相交于點(diǎn)F.試探究線段AB與AF、
FC之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年北京市豐臺(tái)區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

操作:如圖1,點(diǎn)O為線段MN的中點(diǎn),直線PQ與MN相交于點(diǎn)O,請(qǐng)利用圖1畫出一對(duì)以點(diǎn)O為對(duì)稱中心的全等三角形.
探究:如圖2,在四邊形ABCD中,AB∥DC,E為BC邊的中點(diǎn),∠BAE=∠EAF,AF與DC的延長(zhǎng)線相交于點(diǎn)F.試探究線段AB與AF、
FC之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案