【題目】先閱讀理解下面的例題,再按要求解答下列問題:

例題:解一元二次不等式.

解∵,∴可化為.

由有理數(shù)的乘法法則:兩數(shù)相乘,同號得正,得:①

解不等式組①,得,解不等式組②,得

的解集為.

即一元二次不等式的解集為.

1)一元二次不等式的解集為____________;

2)試解一元二次不等式;

3)試解不等式.

【答案】123.

【解析】

1)利用平方差公式進(jìn)行因式分解;
2)利用提公因式法對不等式的左邊進(jìn)行因式分解,再求解可得;
3)需要分類討論:①,②,據(jù)此求解可得.

解:(1)由原不等式得:(x+3)(x-3)>0


解得 x3x-3
故答案為: ;

2)∵

可化為.

由有理數(shù)的乘法法則:兩數(shù)相乘,同號得正,得:

解不等式組①,得,解不等式組②,得,

的解集為,

即一元二次不等式的解集為 ; /p>

3)由有理數(shù)的乘法法則:兩數(shù)相乘,異號得負(fù),得:

解不等式組①,得,

解不等式組②,不等式組無解,

∴不等式的解集為.

故答案為:(123.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(m,4),B(﹣4,n)在反比例函數(shù)y=k0)的圖象上,經(jīng)過點(diǎn)A、B的直線與x軸相交于點(diǎn)C,與y軸相交于點(diǎn)D.

(1)若m=2,求n的值;

(2)求m+n的值;

(3)連接OA、OB,若tan∠AOD+tan∠BOC=1,求直線AB的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場準(zhǔn)備進(jìn)一批兩種不同型號的衣服,已知購進(jìn)種型號的衣服9件,種型號的衣服10件,則共需1810元;若購進(jìn)種型號的衣服12件,種型號的衣服,8件,共需1880元;已知銷售一種種型號衣服可獲利18元,銷售一種種型號衣服可獲利30元,要時這次銷售獲利不少于699元,且種型號衣服不多于28.

1)求型號的衣服進(jìn)價各是多少元?

2)已知購進(jìn)型號衣服是型號衣服的2倍還多4件,則商店這次進(jìn)貨中一共有幾種方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)在一次九年級數(shù)學(xué)做了檢測中,有一道滿分8分的解答題,按評分標(biāo)準(zhǔn),所有考生的得分只有四種:0分,3分,5分,8分.老師為了了解學(xué)生的得分情況與題目的難易情況,從全區(qū)4500名考生的試卷中隨機(jī)抽取一部分,通過分析與整理,繪制了如下兩幅圖不完整的統(tǒng)計(jì)圖.

請根據(jù)以上信息解答下列問題:

1)填空:a=  b=  ,并把條形統(tǒng)計(jì)圖補(bǔ)全;

2)請估計(jì)該地區(qū)此題得滿分(即8分)的學(xué)生人數(shù);

3)已知難度系數(shù)的計(jì)算公式為L=,其中L為難度系數(shù),X為樣本平均得分,W為試題滿分值.一般來說,根據(jù)試題的難度系數(shù)可將試題分為以下三類:當(dāng)0L≤0.4時,此題為難題;當(dāng)0.4L≤0.7時,此題為中等難度試題;當(dāng)0.7L1時,此題為容易題.試問此題對于該地區(qū)的九年級學(xué)生來說屬于哪一類?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,點(diǎn)的中點(diǎn),延長,交于點(diǎn),連結(jié),

1)求證:四邊形是平行四邊形;

2)當(dāng)平分時,寫出的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若等腰三角形的兩邊長為,則它腰上的高長度為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以的頂點(diǎn)O圓心,適當(dāng)長為半徑畫弧,交OA于點(diǎn)C,交OB于點(diǎn)D.再分別以點(diǎn)C、D為圓心,大于的長為半徑畫弧,兩弧在內(nèi)部交于點(diǎn)E.作射線OE,連接CD.則下列說法錯誤的是( )

A. 射線OE的平分線B. 是等腰三角形

C. 直線OE垂直平分線段CDD. O、E兩點(diǎn)關(guān)于CD所在直線對稱

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,ABC(如圖).

1)利用尺規(guī)按下列要求作圖(保留作圖痕跡,不寫作法):

①作∠BAC的平分線AD,交BC于點(diǎn)D;

②作AB邊的垂直平分線EF,分別交AD,AB于點(diǎn)EF

2)連接BE,若∠ABC60°,∠C40°,求∠AEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)計(jì)劃購買型和型課桌凳共套,經(jīng)招標(biāo),購買一套型課桌凳比購買一套型課桌凳少用元,且購買型和型課桌凳共需.

1)求購買一套型課桌凳和一套型課桌凳各需多少元?

2)學(xué)校根據(jù)實(shí)際情況,要求購買這兩種課桌凳的總費(fèi)用不能超過元,并且購買型課桌凳的數(shù)量不能超過型課桌凳數(shù)量的,求該校本次購買型和型課桌凳共有幾種購買方案?怎樣的方案使總費(fèi)用最低?并求出最低消費(fèi).

查看答案和解析>>

同步練習(xí)冊答案