【題目】如圖,△ABC的三個頂點坐標分別為A(-2,4),B(-3,1),C(-1,1),以坐標原點O為位似中心,相似比為2,在第二象限內將△ABC放大,放大后得到△A'B'C'.
(1)畫出放大后的△A'B'C',并寫出點A',B',C'的坐標.(點A,B,C的對應點為A',B',C')
(2)求△A'B'C'的面積.
科目:初中數學 來源: 題型:
【題目】(1)一個不透明的盒中裝有若干個除顏色外都相同的紅球與黃球.在這個口袋中先放入2個白球,再進行摸球試驗,摸球試驗的要求:先攪拌均勻,每次摸出一個球,記錄顏色后放回盒中,再繼續(xù)摸球,全班一共做了400次這樣的摸球試驗.如果知道摸出白球的頻數是40,你能估計在未放入白球前,袋中原來共有多少個小球嗎?
(2)提出問題:一個不透明的盒中裝有若干個只有顏色不一樣的紅球與黃球,怎樣估算不同顏色球的數量?
活動操作:先從盒中摸出8個球,畫上記號放回盒中.再進行摸球試驗,摸球試驗的要求:先攪拌均勻,每次摸出一個球,記錄顏色、是否有記號,放回盒中,再繼續(xù)摸球、記錄、放回袋中.
統(tǒng)計結果:摸球試驗活動一共做了50次,統(tǒng)計結果如下表:
球的類別 | 無記號 | 有記號 | ||
紅色 | 黃色 | 紅色 | 黃色 | |
摸到的次數 | 18 | 28 | 2 | 2 |
由上述的摸球試驗推算:
①盒中紅球、黃球各占總球數的百分比分別是多少?
②盒中有紅球多少個?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個木制的棱長為3的正方體的表面涂上顏色,將它的棱三等分,然后從等分點把正方體鋸開,得到27個棱長為l的小正方體,將這些小正方體充分混合后,裝入口袋,從這個口袋中任意取出一個小正方體,則這個小正方體的表面恰好涂有兩面顏色的概率是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB⊥MN,CD⊥MN,垂足分別為B,D,AB=2,CD=4,BD=3.若在直線MN上存在點P,能使△PAB與△PCD相似,則PB=_____
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小明欲測量一座古塔的高度,他拿出一根竹桿豎直插在地面上,然后自己退后,使眼睛通過竹桿的頂端剛好看到塔頂,若小明眼睛離地面,竹桿頂端離地面,小明到竹桿的距離,竹桿到塔底的距離,求這座古塔的高度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中點,連接AE、AC.
(1)點F是DC上一點,連接EF,交AC于點O(如圖1),求證:△AOE∽△COF;
(2)若點F是DC的中點,連接BD,交AE與點G(如圖2),求證:四邊形EFDG是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】黃巖某校搬遷后,需要增加教師和學生的寢室數量,寢室有三類,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因實際需要,單人間的數量在20至30之間(包括20和30),且四人間的數量是雙人間的5倍.
(1)若2018年學校寢室數為64個,以后逐年增加,預計2020年寢室數達到121個,求2018至2020年寢室數量的年平均增長率;
(2)若三類不同的寢室的總數為121個,則最多可供多少師生住宿?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=( 。
A. 75° B. 80° C. 85° D. 90°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐
(1)實踐操作:中,,為直線上一點,過點作,與直線相交于點,如圖①,圖②,圖③所示,則的形狀為______.
(2)問題解決:等腰三角形是一種特殊的三角形,常與全等三角形的相關知識結合在一起解決問題.如圖④,中,,為上一點,為延長線上一點,且,交于,求證:.
(3)拓展與應用,在(2)的條件下,如圖⑤,過點作的垂線,垂足為,若,則的長為______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com